New conditions for Annular Finite-time Stability of Linear Systems

被引:0
作者
Amato, F. [1 ]
De Tommasi, G. [2 ]
Mele, A. [2 ]
Pironti, A. [2 ]
机构
[1] Magna Graecia Univ Catanzaro, Expt Clin Med Dept, Sch Comp Sci & Biomed Engn, Campus Germaneto Salvatore Venuta, I-88100 Catanzaro, Italy
[2] Univ Napoli Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, Via Claudio 21, I-80125 Naples, Italy
来源
2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2016年
关键词
Finite-time stability; annular FTS; DLEs; DLMIs; state fedback control; STABILIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we investigate the annular finite-time stability (AFTS) problem for linear systems. A system is said to be annular finite-time stable if the norm of the system state remains within an upper and lower treshold for a given finite interval of time. Two necessary and sufficient conditions are provided for AFTS, the former requiring the solution of a differential Lyapunov equation (DLE), the latter involving an optimization feasibility problem constrained by differential linear matrix inequalities (DLMIs). We show that the DLE-based condition is more efficient from the computational point of view; however the DLMI-based condition is the starting point to investigate the design problem. To this regard a necessary and sufficient condition for the existence of a state feedback controller which renders the closed loop annular finite-time stable is provided. A numerical example illustrates the improvement of the proposed approach with respect to those existing literature.
引用
收藏
页码:4925 / 4930
页数:6
相关论文
共 21 条
  • [1] Amato E, 2006, P 2006 IEEE C DEC CO, P1928
  • [2] Amato F, 1998, IEEE DECIS CONTR P, P1207, DOI 10.1109/CDC.1998.758438
  • [3] Amato F, 2015, 2015 EUROPEAN CONTROL CONFERENCE (ECC), P1219, DOI 10.1109/ECC.2015.7330706
  • [4] Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems
    Amato, F.
    De Tommasi, G.
    Pironti, A.
    [J]. AUTOMATICA, 2013, 49 (08) : 2546 - 2550
  • [5] Robust finite-time stabilisation of uncertain linear systems
    Amato, F.
    Ariola, M.
    Cosentino, C.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (12) : 2117 - 2127
  • [6] Finite-time stabilization of impulsive dynamical linear systems
    Amato, F.
    Ambrosino, R.
    Cosentino, C.
    De Tommasi, G.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2011, 5 (01) : 89 - 101
  • [7] Finite-time control of linear systems subject to parametric uncertainties and disturbances
    Amato, F
    Ariola, M
    Dorato, P
    [J]. AUTOMATICA, 2001, 37 (09) : 1459 - 1463
  • [8] Amato F, 2014, Finite-time stability and control lecture notes in control and information sciences
  • [9] Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design
    Amato, Francesco
    Ariola, Marco
    Cosentino, Carlo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (04) : 1003 - 1008
  • [10] Callier F. M., 1991, Linear System Theory