A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems

被引:13
作者
Mawhin, J [1 ]
Ureña, AJ
机构
[1] Univ Catholique Louvain, Inst Matemat Pura & Aplicada, B-1348 Louvain, Belgium
[2] Univ Granada, Dept Analisis Matemat, E-18071 Granada, Spain
关键词
Hartman-Nagumo inequality; p-Laplacian; boundary value problems; periodic solutions;
D O I
10.1080/1025583021000022469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalization of the well-known Hartman-Nagumo inequality to the case of the vector ordinary p-Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
引用
收藏
页码:701 / 725
页数:25
相关论文
共 8 条
[1]  
Hartman P, 1964, ORDINARY DIFFERENTIA
[2]  
Hartman P., 1960, T AM MATH SOC, V96, P493, DOI [10.1090/S0002-9947-1960-0124553-5, DOI 10.1090/S0002-9947-1960-0124553-5]
[3]  
KNOBLOCH HW, 1971, J DIFFER EQUATIONS, V9, P67
[4]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[5]  
Manasevich R., 2000, J KOREAN MATH SOC, V37, P665
[6]   Some boundary value problems for Hartman-type perturbations of the ordinary vector p-laplacian [J].
Mawhin, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :497-503
[7]  
Mawhin J, 2001, PROG NONLIN, V43, P37
[8]  
Rouche N., 1973, EQUATIONS DIFFERENTI, V2