Arithmetic properties of 3-regular partitions with distinct odd parts

被引:2
作者
Veena, V. S. [1 ]
Fathima, S. N. [1 ]
机构
[1] Pondicherry Univ, Dept Math, Pondicherry 605014, India
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2021年 / 91卷 / 01期
关键词
Partitions; Modular forms; Congruences; Eta quotients;
D O I
10.1007/s12188-021-00230-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pod(3)(n) denote the number of 3-regular partitions of n with distinct odd parts (and even parts are unrestricted). In this article, we prove an infinite family of congruences for pod(3)(n) using the theory of Hecke eigenforms. We also study the divisibility properties of pod(3)(n) using arithmetic properties of modular forms.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 2006, Number theory in the spirit of Ramanujan
[2]   SOME CONGRUENCES DEDUCIBLE FROM RAMANUJAN'S CUBIC CONTINUED FRACTION [J].
Baruah, Nayandeep Deka ;
Ojah, Kanan Kumari .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (05) :1331-1343
[3]   Rank and congruences for overpartition pairs [J].
Bringmann, Kathrin ;
Lovejoy, Jeremy .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (02) :303-322
[4]   Congruences for partitions with odd parts distinct modulo 5 [J].
Cui, Su-Ping ;
Gu, Wen Xiang ;
Ma, Zhen Sheng .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) :2151-2159
[5]   On 3-regular partitions with odd parts distinct [J].
Gireesh, D. S. ;
Hirschhorn, M. D. ;
Naika, M. S. Mahadeva .
RAMANUJAN JOURNAL, 2017, 44 (01) :227-236
[6]  
Gordon B., 1997, RAMANUJAN J, V1, P25, DOI DOI 10.1023/A:1009711020492
[7]   Arithmetic properties of partitions with odd parts distinct [J].
Hirschhorn, Michael D. ;
Sellers, James A. .
RAMANUJAN JOURNAL, 2010, 22 (03) :273-284
[8]  
Jameson, ARXIV180900666
[9]   Multiplicative eta-quotients [J].
Martin, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (12) :4825-4856
[10]  
Ono K, 1996, J REINE ANGEW MATH, V472, P1