Fabrication, Self-Assembly, and Properties of Ultrathin AlN/GaN Porous Crystalline Nanomembranes: Tubes, Spirals, and Curved Sheets

被引:90
作者
Mei, Yongfeng [1 ]
Thurmer, Dominic J. [1 ]
Deneke, Christoph [1 ]
Kiravittaya, Suwit [1 ]
Chen, Yuan-Fu [1 ]
Dadgar, Armin [2 ]
Bertram, Frank [2 ]
Bastek, Barbara [2 ]
Krost, Alois [2 ]
Christen, Juergen [2 ]
Reindl, Thomas [3 ]
Stoffel, Mathieu [1 ,3 ]
Coric, Emica [1 ]
Schmidt, Oliver G. [1 ]
机构
[1] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany
[2] Univ Magdeburg, Inst Expt Phys, Fak Nat Wissensch, D-39106 Magdeburg, Germany
[3] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
nanomembrane; GaN; AlN; porous; nanotube; rolled-up; ALUMINUM NITRIDE; GAN; LAYER; NANOTUBES; FILMS; MICROSTRUCTURES; ALN/SI(111); SCALABILITY; NETWORKS; SYSTEMS;
D O I
10.1021/nn900580j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ultrathin AlN/GaN crystalline porous freestanding nanomembranes are fabricated on Si(111) by selective silicon etching, and self-assembled into various geometries such as tubes, spirals, and curved sheets. Nanopores with sizes from several to tens of nanometers are produced in nanomembranes of 20-35 nm nominal thickness, caused by the island growth of AlN on Si(111). No crystal-orientation dependence is observed while releasing the AlN/GaN nanomembranes from the Si substrate indicating that the driving stress mainly originates from the zipping effect among islands during growth. Competition between different relaxation mechanisms is experimentally revealed for different nanomembrane geometries and well-described by numerical calculations. The cathodoluminescence emission from GaN nanomembranes reveals a weak peak close to the GaN bandgap, which is dramatically enhanced by electron irradiation.
引用
收藏
页码:1663 / 1668
页数:6
相关论文
共 43 条
[1]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[2]   Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings [J].
Bell, DJ ;
Dong, LX ;
Nelson, BJ ;
Golling, M ;
Zhang, L ;
Grützmacher, D .
NANO LETTERS, 2006, 6 (04) :725-729
[3]   Two-dimensional electron gas based actuation of piezoelectric AlGaN/GaN microelectromechanical resonators [J].
Brueckner, K. ;
Niebelschuetz, F. ;
Tonisch, K. ;
Michael, S. ;
Dadgar, A. ;
Krost, A. ;
Cimalla, V. ;
Ambacher, O. ;
Stephan, R. ;
Hein, M. A. .
APPLIED PHYSICS LETTERS, 2008, 93 (17)
[4]   GaN blue photonic crystal membrane nanocavities [J].
Choi, YS ;
Hennessy, K ;
Sharma, R ;
Haberer, E ;
Gao, Y ;
DenBaars, SP ;
Nakamura, S ;
Hu, EL ;
Meier, C .
APPLIED PHYSICS LETTERS, 2005, 87 (24) :1-3
[5]  
Chou P.C., 1967, ELASTICITY TENSOR DY
[6]   Single-crystal aluminum nitride nanomechanical resonators [J].
Cleland, AN ;
Pophristic, M ;
Ferguson, I .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2070-2072
[7]   Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes [J].
Deneke, C ;
Müller, C ;
Jin-Phillipp, NY ;
Schmidt, OG .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2002, 17 (12) :1278-1281
[8]   Processing of novel SiC and group III-nitride based micro- and nanomechanical devices [J].
Foerster, C ;
Cimalla, V ;
Brueckner, K ;
Lebedev, V ;
Stephan, R ;
Hein, M ;
Ambacher, O .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2005, 202 (04) :671-676
[9]   Nanoscroll formation from strained layer heterostructures [J].
Grundmann, M .
APPLIED PHYSICS LETTERS, 2003, 83 (12) :2444-2446
[10]  
Hoffman R.W., 1966, PHYS THIN FILMS, V3, P211