Algebraic bounds on the Rayleigh-Benard attractor

被引:11
作者
Cao, Yu [1 ]
Jolly, Michael S. [1 ]
Titi, Edriss S. [2 ,3 ,4 ]
Whitehead, Jared P. [5 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[5] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Rayleigh-Benard convection; global attractor; synchronization; CONTINUOUS DATA ASSIMILATION; EQUATIONS;
D O I
10.1088/1361-6544/abb1c6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Rayleigh-Benard system with stress-free boundary conditions is shown to have a global attractor in each affine space where velocity has fixed spatial average. The physical problem is shown to be equivalent to one with periodic boundary conditions and certain symmetries. This enables a Gronwall estimate on enstrophy. That estimate is then used to bound the L-2 norm of the temperature gradient on the global attractor, which, in turn, is used to find a bounding region for the attractor in the enstrophy-palinstrophy plane. All final bounds are algebraic in the viscosity and thermal diffusivity, a significant improvement over previously established estimates. The sharpness of the bounds are tested with numerical simulations.
引用
收藏
页码:509 / 531
页数:23
相关论文
共 18 条
[1]   Downscaling the 2D Benard convection equations using continuous data assimilation [J].
Altaf, M. U. ;
Titi, E. S. ;
Gebrael, T. ;
Knio, O. M. ;
Zhao, L. ;
McCabe, M. F. ;
Hoteit, I. .
COMPUTATIONAL GEOSCIENCES, 2017, 21 (03) :393-410
[2]   FEEDBACK CONTROL OF NONLINEAR DISSIPATIVE SYSTEMS BY FINITE DETERMINING PARAMETERS - A REACTION-DIFFUSION PARADIGM [J].
Azouani, Abderrahim ;
Titi, Edriss S. .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (04) :579-594
[3]   Continuous Data Assimilation Using General Interpolant Observables [J].
Azouani, Abderrahim ;
Olson, Eric ;
Titi, Edriss S. .
JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (02) :277-304
[4]   Strain modulation using defects in two-dimensional MoS2 [J].
Burns, Kory ;
Tan, Anne Marie Z. ;
Gordon, Horace ;
Wang, Tianyao ;
Gabriel, Adam ;
Shao, Lin ;
Hennig, Richard G. ;
Aitkaliyeva, Assel .
PHYSICAL REVIEW B, 2020, 102 (08)
[5]  
Constantin P, 1988, LECT MATH
[6]   Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence [J].
Dascaliuc, R. ;
Foias, C. ;
Jolly, M. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :792-819
[7]   Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging [J].
Di Leoni, Patricio Clark ;
Mazzino, Andrea ;
Biferale, Luca .
PHYSICAL REVIEW FLUIDS, 2018, 3 (10)
[8]   Assimilation of Nearly Turbulent Rayleigh-Benard Flow Through Vorticity or Local Circulation Measurements: A Computational Study [J].
Farhat, Aseel ;
Johnston, Hans ;
Jolly, Michael ;
Titi, Edriss S. .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) :1519-1533
[9]   Continuous Data Assimilation for a 2D B,nard Convection System Through Horizontal Velocity Measurements Alone [J].
Farhat, Aseel ;
Lunasin, Evelyn ;
Titi, Edriss S. .
JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (03) :1065-1087
[10]   ATTRACTORS FOR THE BENARD-PROBLEM - EXISTENCE AND PHYSICAL BOUNDS ON THEIR FRACTAL DIMENSION [J].
FOIAS, C ;
MANLEY, O ;
TEMAM, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (08) :939-967