Compactness via symmetrization

被引:29
作者
Burchard, A [1 ]
Guo, Y
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22902 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
symmetric rearrangement; concentration compactness; dynamical stability; Hardy-Littlewood-Sobolev inequality; Sobolev inequality; Euler-Poisson system; Vlasov-Poisson system; stellar dynamics;
D O I
10.1016/j.jfa.2004.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider two types of translation-invariant functionals I and J on R-m, and a sequence of functions f(n), whose corresponding symmetric rearrangements f(n)* are convergent. We show that f(n) themselves converge up to translations if either lim(n-->proportional to) I (f(n))= lim(n-->infinity)(f(n)*) or lim(n-->infinity) J (f(n)) = lim(n-->infinity)J(f(n)*). These compactness results lead to applications in variational problems and stability problems in stellar dynamics. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 73
页数:34
相关论文
共 39 条
[1]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[2]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[4]  
Brascamp H.J., 1974, J FUNCT ANAL, V17, P227, DOI [10.1016/0022-1236(74)90013-5, DOI 10.1016/0022-1236(74)90013-5]
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   MINIMUM ACTION SOLUTIONS OF SOME VECTOR FIELD-EQUATIONS [J].
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (01) :97-113
[7]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[8]   Steiner symmetrization is continuous in W-1,W-p [J].
Burchard, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (05) :823-860
[9]   Cases of equality in the Riesz rearrangement inequality [J].
Burchard, A .
ANNALS OF MATHEMATICS, 1996, 143 (03) :499-527
[10]   Comparison theorems for exit times [J].
Burchard, A ;
Schmuckenschläger, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (04) :651-692