Positron trapping model for point defects and grain boundaries in polycrystalline materials

被引:36
作者
Oberdorfer, Bernd [1 ]
Wuerschum, Roland [1 ]
机构
[1] Graz Univ Technol, Inst Mat Phys, A-8010 Graz, Austria
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 18期
基金
奥地利科学基金会;
关键词
diffusion; grain boundaries; grain size; nanostructured materials; positron annihilation; vacancies (crystal); TEMPERATURE-DEPENDENCE; VACANCY FORMATION; DIFFUSION; METALS; ANNIHILATION; LIFETIME; SPECTROSCOPY; ALLOYS; SOLIDS;
D O I
10.1103/PhysRevB.79.184103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The exact solution of a diffusion-reaction model for the trapping and annihilation of positrons in grain boundaries of polycrystalline materials with competitive trapping at intragranular point defects is presented. Closed-form expressions are obtained for the mean positron lifetime and for the intensities of the positron lifetime components associated with trapping at grain boundaries and at intragranular point defects. The closed-form solutions allow direct insight in the physical details of the positron annihilation characteristics and can be conveniently applied for the analysis of experimental data. It turns out that the model is not only essential for positron annihilation studies which aim at issues of grain-boundary physics or nanoscaled material but is also of relevance for studies of point defects in polycrystalline materials when grain sizes are in the micrometer range.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Point defect sink strength of low-angle tilt grain boundaries: A phase field dislocation climb model [J].
Liu, Pengchuang ;
Zheng, Songlin ;
Chen, Kaiguo ;
Wang, Xin ;
Yan, Biaojie ;
Zhang, Pengcheng ;
Shi, San-Qiang .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 119 :188-199
[42]   Point defect sink efficiency of low-angle tilt grain boundaries [J].
Gu, Yejun ;
Han, Jian ;
Dai, Shuyang ;
Zhu, Yichao ;
Xiang, Yang ;
Srolovitz, David J. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2017, 101 :166-179
[43]   Diffusion-reaction model for positron trapping and annihilation at spherical extended defects and in precipitate-matrix composites [J].
Wuerschum, Roland ;
Resch, Laura ;
Klinser, Gregor .
PHYSICAL REVIEW B, 2018, 97 (22)
[44]   A model of accelerated diffusion along triple junction of grain boundaries [J].
Klinger, L ;
Levin, L ;
Petelin, A .
INTERGRANULAR AND INTERPHASE BOUNDARIES IN MATERIALS, PT 2, 1996, 207- :501-504
[45]   Proton diffusion in two model grain boundaries of monoclinic zirconia [J].
Haurat, Emile ;
Crocombette, Jean-Paul ;
Jublot, Michael ;
Tupin, Marc .
ACTA MATERIALIA, 2024, 273
[46]   Observation and Implications of Composition Inhomogeneity Along Grain Boundaries in Thin Film Polycrystalline CdTe Photovoltaic Devices [J].
Misra, Sudhajit ;
Aguiar, Jeffery A. ;
Sun, Yubo ;
van Devener, Brian ;
Palekis, Vasilios ;
Ferekides, Christos S. ;
Yoon, Heayoung P. ;
Bermel, Peter ;
Scarpulla, Michael A. .
ADVANCED MATERIALS INTERFACES, 2019, 6 (16)
[47]   Stress control in polycrystalline thin films-reduction in adatoms diffusion into grain boundaries via surfactants [J].
Yang, Yi ;
Huang, Hanchen ;
Xiang, S. K. ;
Chason, Eric .
APPLIED PHYSICS LETTERS, 2010, 96 (21)
[48]   Extended Positron-Positronium Trapping Defects in the MgAl2O4 Spinel Ceramics [J].
Klym, Halyna ;
Hadzaman, Ivan ;
Vila, Rafael ;
Popov, Anatoli, I .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (08)
[49]   Kinetics of the Bi segregation at grain boundaries in polycrystalline Cu [J].
Chang, LS ;
Rabkin, E ;
Straumal, BB ;
Baretzky, B ;
Gust, W .
INTERGRANULAR AND INTERPHASE BOUNDARIES IN MATERIALS, IIB98, 1999, 294-2 :585-588
[50]   Emission Mossbauer spectroscopy of grain boundaries in polycrystalline molybdenum [J].
Popov, V. V. ;
Sergeev, A. V. .
PHYSICS OF METALS AND METALLOGRAPHY, 2015, 116 (04) :378-384