Positron trapping model for point defects and grain boundaries in polycrystalline materials

被引:36
作者
Oberdorfer, Bernd [1 ]
Wuerschum, Roland [1 ]
机构
[1] Graz Univ Technol, Inst Mat Phys, A-8010 Graz, Austria
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 18期
基金
奥地利科学基金会;
关键词
diffusion; grain boundaries; grain size; nanostructured materials; positron annihilation; vacancies (crystal); TEMPERATURE-DEPENDENCE; VACANCY FORMATION; DIFFUSION; METALS; ANNIHILATION; LIFETIME; SPECTROSCOPY; ALLOYS; SOLIDS;
D O I
10.1103/PhysRevB.79.184103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The exact solution of a diffusion-reaction model for the trapping and annihilation of positrons in grain boundaries of polycrystalline materials with competitive trapping at intragranular point defects is presented. Closed-form expressions are obtained for the mean positron lifetime and for the intensities of the positron lifetime components associated with trapping at grain boundaries and at intragranular point defects. The closed-form solutions allow direct insight in the physical details of the positron annihilation characteristics and can be conveniently applied for the analysis of experimental data. It turns out that the model is not only essential for positron annihilation studies which aim at issues of grain-boundary physics or nanoscaled material but is also of relevance for studies of point defects in polycrystalline materials when grain sizes are in the micrometer range.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Grain Boundaries and Diffusion Phenomena in Severely Deformed Materials [J].
Wilde, Gerhard ;
Divinski, Sergiy .
MATERIALS TRANSACTIONS, 2019, 60 (07) :1302-1315
[22]   Energetics of point defect interacting with bi-crystal Σ3 copper grain boundaries [J].
Yu, Wenshan ;
Shen, Shengping ;
Liu, Qunfeng .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 118 :47-55
[23]   Identification of Point Defects in Multielement Compounds and Alloys with Positron Annihilation Spectroscopy: Challenges and Opportunities [J].
Tuomisto, Filip .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (10)
[24]   Faceted grain boundaries in polycrystalline films [J].
S. V. Bobylev ;
I. A. Ovid’ko .
Physics of the Solid State, 2003, 45 :1926-1931
[25]   An Atomistic Simulation of Special Tilt Boundaries in α-Ti: Structure, Energy, Point Defects, and Grain-Boundary Self-Diffusion [J].
Urazaliev, M. G. ;
Stupak, M. E. ;
Popov, V. V. .
PHYSICS OF METALS AND METALLOGRAPHY, 2022, 123 (06) :576-582
[26]   An Atomistic Simulation of Special Tilt Boundaries in α-Ti: Structure, Energy, Point Defects, and Grain-Boundary Self-Diffusion [J].
M. G. Urazaliev ;
M. E. Stupak ;
V. V. Popov .
Physics of Metals and Metallography, 2022, 123 :576-582
[27]   Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects [J].
Frolov, Timofey ;
Zhu, Qiang ;
Oppelstrup, Tomas ;
Marian, Jaime ;
Rudd, Robert E. .
ACTA MATERIALIA, 2018, 159 :123-134
[28]   Surface exchange reactions and fast grain boundary diffusion in polycrystalline materials: Application of a spherical grain model [J].
Preis, W ;
Sitte, W .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (10) :1820-1827
[29]   Susceptibility of different crystal orientations and grain boundaries of polycrystalline Ni to hydrogen blister formation [J].
Zamanzade, Mohammad ;
Mueller, Christian ;
Velayarce, Jorge Rafael ;
Motz, Christian .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (14) :7706-7714
[30]   H trapping and mobility in nanostructured tungsten grain boundaries: a combined experimental and theoretical approach [J].
Gonzalez, C. ;
Panizo-Laiz, M. ;
Gordillo, N. ;
Guerrero, C. L. ;
Tejado, E. ;
Munnik, F. ;
Piaggi, P. ;
Bringa, E. ;
Iglesias, R. ;
Perlado, J. M. ;
Gonzalez-Arrabal, R. .
NUCLEAR FUSION, 2015, 55 (11)