Automated Graph Regularized Projective Nonnegative Matrix Factorization for Document Clustering

被引:53
|
作者
Pei, Xiaobing [1 ]
Wu, Tao [1 ]
Chen, Chuanbo [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Software, Wuhan 430074, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering; projective nonnegative matrix factorization; ALGORITHM; REPRESENTATION; PARTS;
D O I
10.1109/TCYB.2013.2296117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel projective nonnegative matrix factorization (PNMF) method for enhancing the clustering performance is presented, called automated graph regularized projective nonnegative matrix factorization (AGPNMF). The idea of AGPNMF is to extend the original PNMF by incorporating the automated graph regularized constraint into the PNMF decomposition. The key advantage of this approach is that AGPNMF simultaneously finds graph weights matrix and dimensionality reduction of data. AGPNMF seeks to extract the data representation space that preserves the local geometry structure. This character makes AGPNMF more intuitive and more powerful than the original method for clustering tasks. The kernel trick is used to extend AGPNMF model related to the input space by some nonlinear map. The proposed method has been applied to the problem of document clustering using the well-known Reuters-21578, TDT2, and SECTOR data sets. Our experimental evaluations show that the proposed method enhances the performance of PNMF for document clustering.
引用
收藏
页码:1821 / 1831
页数:11
相关论文
共 50 条
  • [1] Robust graph regularized nonnegative matrix factorization for clustering
    Shudong Huang
    Hongjun Wang
    Tao Li
    Tianrui Li
    Zenglin Xu
    Data Mining and Knowledge Discovery, 2018, 32 : 483 - 503
  • [2] Robust Graph Regularized Nonnegative Matrix Factorization for Clustering
    Peng, Chong
    Kang, Zhao
    Hu, Yunhong
    Cheng, Jie
    Cheng, Qiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (03)
  • [3] Robust graph regularized nonnegative matrix factorization for clustering
    Huang, Shudong
    Wang, Hongjun
    Li, Tao
    Li, Tianrui
    Xu, Zenglin
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (02) : 483 - 503
  • [4] Graph Regularized Deep Semi-nonnegative Matrix Factorization for Clustering
    Zeng, Xianhua
    Qu, Shengwei
    Wu, Zhilong
    EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016), 2016, 10033
  • [5] Graph regularized nonnegative matrix factorization with label discrimination for data clustering
    Xing, Zhiwei
    Ma, Yingcang
    Yang, Xiaofei
    Nie, Feiping
    NEUROCOMPUTING, 2021, 440 : 297 - 309
  • [6] Robust Graph Regularized Nonnegative Matrix Factorization
    Huang, Qi
    Zhang, Guodao
    Yin, Xuesong
    Wang, Yigang
    IEEE ACCESS, 2022, 10 : 86962 - 86978
  • [7] Graph regularized discriminative nonnegative matrix factorization
    Liu, Zhonghua
    Zhu, Fa
    Xiong, Hao
    Chen, Xingchi
    Pelusi, Danilo
    Vasilakos, Athanasios V.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [8] Multiple graph regularized nonnegative matrix factorization
    Wang, Jim Jing-Yan
    Bensmail, Halima
    Gao, Xin
    PATTERN RECOGNITION, 2013, 46 (10) : 2840 - 2847
  • [9] Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering
    Sun, Jing
    Cai, Xibiao
    Sun, Fuming
    Hong, Richang
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (05): : 2607 - 2627
  • [10] Graph Regularized Projective Non-negative Matrix Factorization for Image Clustering
    Shi, Yuqing
    Wang, Weilan
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 413 - 416