SiC nanowire reinforced carbon/carbon composites with improved interlaminar strength

被引:31
作者
Shen Qingliang [1 ]
Li Hejun [1 ]
Li Lu [1 ]
Li Yunyu [1 ]
Fu Qiangang [1 ]
Lin Hongjiao [1 ]
Song Qiang [1 ]
机构
[1] Northwestern Polytech Univ, Carbon Carbon Composites Res Ctr, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2016年 / 651卷
基金
中国国家自然科学基金;
关键词
Carbon-carbon composites (CCCs); Microstructures; Strength; Chemical vapor deposition (CVD); CHEMICAL-VAPOR-DEPOSITION; CARBON NANOTUBE GROWTH; C/C-COMPOSITES; PYROLYTIC CARBON; PYROCARBON; CHEMISTRY; KINETICS; MICROSTRUCTURE; TENSILE; FIBERS;
D O I
10.1016/j.msea.2015.10.114
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
SiC nanowires with surface dentations were in-situ grown on carbon fiber cloths and then they were stacked to form 2D carbon preform. After that, the preform was densified via chemical vapor infiltration to prepare SiC nanowire reinforced carbon/carbon (SiCNW-C/C) composites. Introduced SiC nanowires significantly change the crystallite orientations of pyrocarbon matrix. Coaxial pyrocarbon with higher optical activity and larger crystallite size has been deposited around the nanowires. The interlaminar shear strength of SiCNW-C/C composites increases by 32% compared with the baseline. The increase of interlaminar strength could be ascribed to a synergistic effect of SiCNWs and coaxial pyrocarbon interlayer. SIC nanowires with dentations construct nanoscale mechanical interlocking with the matrix and improve the load transfer efficiency. Besides, the pyrocarbon interlayer helps deflecting the cracks out of the basal shear plane under shear stress. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:583 / 589
页数:7
相关论文
共 38 条
[1]   Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance [J].
Aly-Hassan, MS ;
Hatta, H ;
Wakayama, S ;
Watanabe, M ;
Miyagawa, K .
CARBON, 2003, 41 (05) :1069-1078
[2]   Chemistry and kinetics of chemical vapour deposition of pyrocarbon .1. Fundamentals of kinetics and chemical reaction engineering [J].
Benzinger, W ;
Becker, A ;
Huttinger, KJ .
CARBON, 1996, 34 (08) :957-966
[3]   Chemistry and kinetics of chemical vapor infiltration of pyrocarbon -: VI.: Mechanical and structural properties of infiltrated carbon fiber felt [J].
Benzinger, W ;
Hüttinger, KJ .
CARBON, 1999, 37 (08) :1311-1322
[4]   Carbon nanotube growth on high modulus carbon fibres: Morphological and interfacial characterization [J].
Boura, O. ;
Diamanti, E. K. ;
Grammatikos, S. A. ;
Gournis, D. ;
Paipetis, A. S. .
SURFACE AND INTERFACE ANALYSIS, 2013, 45 (09) :1372-1381
[5]   Chemistry and kinetics of chemical vapor deposition of pyrocarbon -: VI.: influence of temperature using methane as a carbon source [J].
Brüggert, M ;
Hu, Z ;
Huttinger, KJ .
CARBON, 1999, 37 (12) :2021-2030
[6]  
Buckley J.D., 1993, CarbonCarbon Materials and Composites
[7]   Oxidation protection of SiC-coated C/C composites by SiC nanowire-toughened CrSi2-SiC-Si coating [J].
Chu Yanhui ;
Li Hejun ;
Fu Qiangang ;
Qi Lehua ;
Wei Bingbo .
CORROSION SCIENCE, 2012, 55 :394-400
[8]   Microstructure and growth mechanism of SiC nanowires with periodically fluctuating hexagonal prisms by CVD [J].
Chu, Yanhui ;
Fu, Qiangang ;
Zhang, Zhengzhong ;
Li, Hejun ;
Li, Kezhi ;
Lei, Qin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 508 (02) :L36-L39
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   THE FUTURE OF CARBON-CARBON COMPOSITES [J].
FITZER, E .
CARBON, 1987, 25 (02) :163-190