Bifurcations of planar sliding homoclinics

被引:4
作者
Awrejcewicz, Jan
Feckan, Michal
Olejnik, Pawel
机构
[1] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
[2] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
关键词
Perturbation techniques - Planers - Problem solving;
D O I
10.1155/MPE/2006/85349
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study bifurcations from sliding homoclinic solutions to bounded solutions on R for certain discontinuous planar systems under periodic perturbations. Sufficient conditions are derived for such perturbation problems.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 7 条
[1]   On continuous approximation of discontinuous systems [J].
Awrejcewicz, J ;
Feckan, M ;
Olejnik, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (07) :1317-1331
[2]   Stick-slip dynamics of a two-degree-of-freedom system [J].
Awrejcewicz, J ;
Olejnik, P .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04) :843-861
[3]  
AWREJCEWICZ J, 2005, P 5 EUROMECH NONL DY, P277
[4]   EXPONENTIAL DICHOTOMIES, HETEROCLINIC ORBITS, AND MELNIKOV FUNCTIONS [J].
BATTELLI, F ;
LAZZARI, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 86 (02) :342-366
[5]  
DEIMLING IK, 1992, DEGRUYTER SERIES NON, V1
[6]   Bifurcations in nonlinear discontinuous systems [J].
Leine, RI ;
van Campen, DH ;
van de Vrande, BL .
NONLINEAR DYNAMICS, 2000, 23 (02) :105-164
[7]  
ZOU YK, 2004, MELNIKOV METHOD DETE