Controlling the magnetic anisotropy of RumIrn (m plus n=3) clusters using the MgO(001) substrate

被引:3
作者
Diao, Qing [1 ,2 ]
Yang, Chengwei [1 ,2 ]
Liu, Honglei [1 ,2 ]
Yan, Hongxia [1 ,2 ]
Ge, Guixian [1 ,2 ]
Yang, Xiaodong [1 ,2 ]
Yang, Jueming [1 ,2 ]
机构
[1] Shihezi Univ, Coll Sci, Key Lab Ecophys, Shihezi 832003, Peoples R China
[2] Shihezi Univ, Coll Sci, Dept Phys, Shihezi 832003, Peoples R China
基金
中国国家自然科学基金;
关键词
MAGNETOCRYSTALLINE ANISOTROPY;
D O I
10.1039/d2cp03760b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large perpendicular magnetic anisotropy energy (MAE) and flexible regulation of the magnitude and direction of MAE have great potential for application in information storage devices. Here, utilizing first-principles calculations, we investigated the magnetic properties of free and MgO(001) supported RumIrn clusters (RumIrn@MgO(m + n = 3)). The results indicate that the MAE of mixed clusters increases with the number of Ir atoms due to Ir having a strong coupling between the non-degenerate d(xy) and d(x)(2)-y(2) states. The MAE of free Ir-3 is -8.18 meV with the easy magnetization direction parallel to the x-axis, while the MAE of supported Ir-3 on the MgO substrate increases by a factor of 2.6, and the easy magnetization axis of the structure is shifted to a direction perpendicular to the substrate surface. This change in MAE is due to the significant enhancement in the coupling between the non-degenerate d(yz) and d(x)(2)-y(2) states near the Fermi level of Ir-3 atoms. Moreover, Ir-3@MgO possesses high thermodynamic stability. These results give a new method for manipulating MAE and the direction of easy magnetization, which has great potential for application in magnetic nanodevices.
引用
收藏
页码:870 / 877
页数:8
相关论文
共 38 条
  • [1] Domain wall-magnetic tunnel junction spin-orbit torque devices and circuits for in-memory computing
    Alamdar, Mahshid
    Leonard, Thomas
    Cui, Can
    Rimal, Bishweshwor P.
    Xue, Lin
    Akinola, Otitoaleke G.
    Xiao, T. Patrick
    Friedman, Joseph S.
    Bennett, Christopher H.
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (11)
  • [2] Magnetic Anisotropy and Magnetization Dynamics of Individual Atoms and Clusters of Fe and Co on Pt(111)
    Balashov, T.
    Schuh, T.
    Takacs, A. F.
    Ernst, A.
    Ostanin, S.
    Henk, J.
    Mertig, I.
    Bruno, P.
    Miyamachi, T.
    Suga, S.
    Wulfhekel, W.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (25)
  • [3] IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS
    BLOCHL, PE
    JEPSEN, O
    ANDERSEN, OK
    [J]. PHYSICAL REVIEW B, 1994, 49 (23): : 16223 - 16233
  • [4] TIGHT-BINDING APPROACH TO THE ORBITAL MAGNETIC-MOMENT AND MAGNETOCRYSTALLINE ANISOTROPY OF TRANSITION-METAL MONOLAYERS
    BRUNO, P
    [J]. PHYSICAL REVIEW B, 1989, 39 (01): : 865 - 868
  • [5] Band gap and magnetic engineering of penta-graphene via adsorption of small transition clusters
    Chen, Jia
    Cui, Hong
    Wang, Peng
    Zheng, Yanfei
    Wang, Dandan
    Chen, Hong
    Yuan, Hongkuan
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (45) : 26155 - 26166
  • [6] Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
    Dieny, B.
    Chshiev, M.
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (02)
  • [7] Ehrmann A., 2021, CHEM SOLUTION SYNTHE, P665
  • [8] Half-Metallicity and Magnetic Anisotropy in Transition-Metal-Atom-Doped Graphitic Germanium Carbide (g-GeC) Monolayers
    Fan, Xueping
    Jiang, Jiawei
    Li, Rui
    Mi, Wenbo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (24) : 13688 - 13695
  • [9] Magnetic anisotropy of iridium dimers on two-dimensional materials
    Guo, Miaomiao
    Liang, Xiaoqing
    Wang, Han
    Zhang, Junfeng
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (01) : 238 - 244
  • [10] A new constraint DFT technique for self-consistent determination of U values
    Hamada, Tomoyuki
    Ohno, Takahisa
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (06)