4-chromatic edge critical Grotzsch-Sachs graphs

被引:5
作者
Dobrynin, A. A. [1 ]
Mel'nikov, L. S. [1 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
关键词
Planar graphs; Vertex coloring; Chromatic number; 4-critical graphs; Grotzsch-Sachs graphs;
D O I
10.1016/j.disc.2008.06.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a 4-regular plane graph and suppose that G has a cycle decomposition S (i.e., each edge of G is in exactly one cycle of the decomposition) with every pair of adjacent edges on a face always in different cycles of S. Such a graph G arises as a superposition of simple closed curves in the plane with tangencies disallowed. Two 4-chromatic edge critical graphs of order 48 generated by four curves are presented. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2564 / 2566
页数:3
相关论文
共 15 条
  • [1] Dobrynin AA, 2008, SIB ELECTRON MATH RE, V5, P255
  • [2] Counterexamples to Grotzsch-Sachs-Koester's conjecture
    Dobrynin, AA
    Mel'nikov, LS
    [J]. DISCRETE MATHEMATICS, 2006, 306 (06) : 591 - 594
  • [3] DOBRYNIN AA, J GRAPH THE IN PRESS
  • [4] Jaeger F, 1976, C NUMERANTIUM, VXV, P682
  • [5] Jaeger F., 1989, Graph Theory in memory of G. A. Dirac, P515
  • [6] Jaeger F., 1978, Probl combinatoires et theorie des graphes, P243
  • [7] Jensen T., 1995, Graph Coloring Problems, P115
  • [8] NOTE TO A PROBLEM OF GALLAI,T. AND DIRAC,G.A.
    KOESTER, G
    [J]. COMBINATORICA, 1985, 5 (03) : 227 - 228
  • [9] Koester G., 1985, GRAPHS HYPERGRAPHS A, P102
  • [10] Koester G., 1984, Wiss. Z. Univ. Halle, V33, P129