Quantum voting protocol using two-mode squeezed states

被引:12
|
作者
Yi Zhi [1 ]
He Guang-Qiang [1 ]
Ze Gui-Hua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum voting; two-mode squeezed state; uncertainty principle; KEY DISTRIBUTION; UNCONDITIONAL SECURITY;
D O I
10.7498/aps.58.3166
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A basic quantum voting protocol using two-mode squeezed states is proposed firstly in this paper. This protocol makes use of the uncertainty principle by using random-selection, possible attack modes are then analyzed. The mode-mode correlation of two-mode squeezed states guarantees the security of the protocol.
引用
收藏
页码:3166 / 3172
页数:7
相关论文
共 28 条
  • [1] Quantum information with continuous variables
    Braunstein, SL
    van Loock, P
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (02) : 513 - 577
  • [2] GERF NJ, 2001, PHYS REV A, V63, P2311
  • [3] Quantum cryptography
    Gisin, N
    Ribordy, GG
    Tittel, W
    Zbinden, H
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 145 - 195
  • [4] Gottesman D, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.022309
  • [5] Continuous-variable quantum cryptography is secure against non-Gaussian attacks
    Grosshans, F
    Cerf, NJ
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (04) : 4
  • [6] Collective attacks and unconditional security in continuous variable quantum key distribution
    Grosshans, F
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (02)
  • [7] Grosshans F, 2003, QUANTUM INF COMPUT, V3, P535
  • [8] Quantum key distribution using gaussian-modulated coherent states
    Grosshans, F
    Van Assche, G
    Wenger, J
    Brouri, R
    Cerf, NJ
    Grangier, P
    [J]. NATURE, 2003, 421 (6920) : 238 - 241
  • [9] Continuous variable quantum cryptography using coherent states
    Grosshans, F
    Grangier, P
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (05) : 4
  • [10] Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations
    He, GQ
    Zhu, J
    Zeng, GH
    [J]. PHYSICAL REVIEW A, 2006, 73 (01):