Sleep stage classification using fuzzy sets and machine learning techniques

被引:0
|
作者
Piñero, P
Garcia, P [1 ]
Arco, L
Alvarez, A
García, MM
Bonal, R
机构
[1] Univ Ciencias Informat, Grp Bioinformat, Havana, Cuba
[2] Univ Cent Marta Abreu, Ctr Estudios Informat, Las Villas, Cuba
关键词
sleep stages; fuzzy rules-based reasoning; fuzzy system; expert system; machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hypnogram is determined after a study of electrophysiological records. In this paper we present the Intelligent system for sleep stages classification (ISSSC). This system is divided into four different modules: the first processes the electrophysiological signals and determines its most relevant parameters; the second module establishes fuzzy rules that will be used during the classification process; the third module is an inference module, it implements a fuzzy model. Finally the system builds the patient's hypnogram and provides us different outputs. We present the classification results obtained from applying the systems to classify patients with different sleep disorders. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1137 / 1143
页数:7
相关论文
共 50 条
  • [41] Can machine learning techniques help for classification of obstructive sleep apnea severity
    Bozkurt, S.
    Bostanci, A.
    Turhan, M.
    JOURNAL OF SLEEP RESEARCH, 2016, 25 : 252 - 252
  • [42] A Classification Approach with Different Feature Sets to Predict the Quality of Different Types of Wine using Machine Learning Techniques
    Aich, Satyabrata
    Al-Absi, Ahmed Abdulhakim
    Hui, Kueh Lee
    Lee, John Tark
    Sain, Mangal
    2018 20TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2018, : 139 - 143
  • [43] Fuzzy sets in machine learning and data mining
    Huellermeier, Eyke
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 1493 - 1505
  • [44] Deep Learning for Sleep Stage Classification
    Wang, Yang
    Wu, Dongrui
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3833 - 3838
  • [45] Software for classification of banana ripening stage using machine learning
    de Souza, Angela Vacaro
    de Mello, Jessica Marques
    da Silva Pavaro, Vitoria Ferreira
    Putti, Fernando Ferrari
    REVISTA BRASILEIRA DE FRUTICULTURA, 2024, 46
  • [46] Wind turbine contaminant classification using machine learning techniques
    Cummins, S.
    Campbell, J. N.
    Durkan, S. M.
    Somers, J.
    Finnegan, W.
    Goggins, J.
    Hayden, P.
    Murray, R.
    Burke, D.
    Lally, C.
    Alli, M. B.
    Varvarezos, L.
    Costello, J. T.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2023, 210
  • [47] Classification of thermally treated wood using machine learning techniques
    Nasir, Vahid
    Nourian, Sepideh
    Avramidis, Stavros
    Cool, Julie
    WOOD SCIENCE AND TECHNOLOGY, 2019, 53 (01) : 275 - 288
  • [48] Malware Classification Approaches Using Machine Learning Techniques: A Review
    Naik, Shivarti
    Dessai, Amita
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 111 - 117
  • [49] hERG liability classification models using machine learning techniques
    Konda L.S.K.
    Keerthi Praba S.
    Kristam R.
    Computational Toxicology, 2019, 12
  • [50] CLASSIFICATION OF RAIL SWITCH DATA USING MACHINE LEARNING TECHNIQUES
    Bryan, Kaylen J.
    Solomon, Mitchell
    Jensen, Emily
    Coley, Christina
    Rajan, Kailas
    Tian, Charlie
    Mijatovic, Nenad
    Kiss, James M.
    Lamoureux, Benjamin
    Dersin, Pierre
    Smith, Anthony O.
    Peter, Adrian M.
    PROCEEDINGS OF THE ASME JOINT RAIL CONFERENCE, 2018, 2018,