Sleep stage classification using fuzzy sets and machine learning techniques

被引:0
|
作者
Piñero, P
Garcia, P [1 ]
Arco, L
Alvarez, A
García, MM
Bonal, R
机构
[1] Univ Ciencias Informat, Grp Bioinformat, Havana, Cuba
[2] Univ Cent Marta Abreu, Ctr Estudios Informat, Las Villas, Cuba
关键词
sleep stages; fuzzy rules-based reasoning; fuzzy system; expert system; machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hypnogram is determined after a study of electrophysiological records. In this paper we present the Intelligent system for sleep stages classification (ISSSC). This system is divided into four different modules: the first processes the electrophysiological signals and determines its most relevant parameters; the second module establishes fuzzy rules that will be used during the classification process; the third module is an inference module, it implements a fuzzy model. Finally the system builds the patient's hypnogram and provides us different outputs. We present the classification results obtained from applying the systems to classify patients with different sleep disorders. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1137 / 1143
页数:7
相关论文
共 50 条
  • [21] Road vehicle classification using machine learning techniques
    Al-Tarawneh, Mu'ath
    Huang, Ying
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2019, 2019, 10970
  • [22] Classification of WatSan Technologies Using Machine Learning Techniques
    Al Nuaimi, Hala
    Abdelmagid, Mohamed
    Bouabid, Ali
    Chrysikopoulos, Constantinos V. V.
    Maalouf, Maher
    WATER, 2023, 15 (15)
  • [23] CLASSIFICATION OF DIABETES USING ENSEMBLE MACHINE LEARNING TECHNIQUES
    Ashisha G.R.
    Mary X.A.
    Raja J.M.
    Scalable Computing, 2024, 25 (04): : 3172 - 3180
  • [24] Patient Discharge Classification Using Machine Learning Techniques
    Gramaje A.
    Thabtah F.
    Abdelhamid N.
    Ray S.K.
    Annals of Data Science, 2021, 8 (04) : 755 - 767
  • [25] ECG beat classification using machine learning techniques
    Jambukia, Shweta H.
    Dabhi, Vipul K.
    Prajapati, Harshadkumar B.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2018, 26 (01) : 32 - 53
  • [26] Classification of cardiac arrhythmia using machine learning techniques
    Firyulina, M. A.
    Kashirina, I. L.
    APPLIED MATHEMATICS, COMPUTATIONAL SCIENCE AND MECHANICS: CURRENT PROBLEMS, 2020, 1479
  • [27] Darknet Traffic Classification using Machine Learning Techniques
    Iliadis, Lazaros Alexios
    Kaifas, Theodoros
    2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [28] Classification of Heart Disease Using Machine Learning Techniques
    Rajendran, Perivitta
    Haw, Su-Cheng
    Naveen, Palaichamy
    5TH INTERNATIONAL CONFERENCE ON DIGITAL TECHNOLOGY IN EDUCATION, ICDTE 2021, 2021, : 130 - 135
  • [29] Animal species classification using machine learning techniques
    Alharbi, Fahad
    Alharbi, Abrar
    Kamioka, Eiji
    2018 INTERNATIONAL JOINT CONFERENCE ON METALLURGICAL AND MATERIALS ENGINEERING (JCMME 2018), 2019, 277
  • [30] Classification of mysticete sounds using machine learning techniques
    Halkias, Xanadu C.
    Paris, Sebastien
    Glotin, Herve
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 134 (05): : 3496 - 3505