FANet: Features Adaptation Network for 360° Omnidirectional Salient Object Detection

被引:13
|
作者
Huang, Mengke [1 ,2 ]
Liu, Zhi [1 ,2 ]
Li, Gongyang [1 ,2 ]
Zhou, Xiaofei [3 ]
Le Meur, Olivier [4 ]
机构
[1] Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Peoples R China
[4] Univ Rennes 1, IRISA, F-35042 Rennes, France
基金
中国国家自然科学基金;
关键词
360 degrees omnidirectional image; salient object detection; equirectangular and cube-map projection; projection features adaptation; multi-level features adaptation; SEGMENTATION;
D O I
10.1109/LSP.2020.3028192
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Salient object detection (SOD) in 360 degrees omnidirectional images has become an eye-catching problem because of the popularity of affordable 360 degrees cameras. In this paper, we propose a Features Adaptation Network (FANet) to highlight salient objects in 360 degrees omnidirectional images reliably. To utilize the feature extraction capability of convolutional neural networks and capture global object information, we input the equirectangular 360 degrees images and corresponding cube-map 360 degrees images to the feature extraction network (FENet) simultaneously to obtain multi-level equirectangular and cube-map features. Furthermore, we fuse these two kinds of features at each level of the FENet by a projection features adaptation (PFA) module, for selecting these two kinds of features adaptively. Finally, we combine the preliminary adaptation features at different levels by a multi-level features adaptation (MLFA) module, which weights these different-level features adaptively and produces the final saliencymaps. Experiments show our FANet outperforms the state-of-the-art methods on the 360 degrees omnidirectional SOD datasets.
引用
收藏
页码:1819 / 1823
页数:5
相关论文
共 50 条
  • [31] AANet: Adjacency auxiliary network for salient object detection
    Li, Xialu
    Cui, Ziguan
    Gan, Zongliang
    Tang, Guijin
    Liu, Feng
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (10): : 3729 - 3749
  • [32] Split-guidance network for salient object detection
    Chen, Shuhan
    Yu, Jinhao
    Xu, Xiuqi
    Chen, Zeyu
    Lu, Lu
    Hu, Xuelong
    Yang, Yuequan
    VISUAL COMPUTER, 2023, 39 (04) : 1437 - 1451
  • [33] FGNet: Fixation guidance network for salient object detection
    Yuan, Junbin
    Xiao, Lifang
    Wattanachote, Kanoksak
    Xu, Qingzhen
    Luo, Xiaonan
    Gong, Yongyi
    NEURAL COMPUTING & APPLICATIONS, 2023, 36 (2) : 569 - 584
  • [34] BINet: Bidirectional interactive network for salient object detection
    Chen, Tianyou
    Hu, Xiaoguang
    Xiao, Jin
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2021, 465 : 490 - 502
  • [35] Perception-and-Regulation Network for Salient Object Detection
    Zhu, Jinchao
    Zhang, Xiaoyu
    Fang, Xian
    Wang, Yuxuan
    Tan, Panlong
    Liu, Junnan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6525 - 6537
  • [36] Hierarchical Feature Fusion Network for Salient Object Detection
    Li, Xuelong
    Song, Dawei
    Dong, Yongsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 9165 - 9175
  • [37] BENet: Boundary Enhance Network for Salient Object Detection
    Yan, Zhiqi
    Liang, Shuang
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 228 - 239
  • [38] Annular Feature Pyramid Network for Salient Object Detection
    Zheng, Tao
    Li, Bo
    Liu, Jiajia
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 1 - 6
  • [39] A Simple Network with Progressive Structure for Salient Object Detection
    Zhou, Boyi
    Yang, Gang
    Wan, Xin
    Wang, Yutao
    Liu, Chang
    Wang, Hangxu
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 397 - 408
  • [40] Hierarchical Salient Object Detection Network with Dense Connections
    Zhang, Qing
    Shi, Jianchen
    Zuo, Baochuan
    Dai, Meng
    Dong, Tianzhen
    Qi, Xiao
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 454 - 466