Modeling graphite under stress: Equations of state, vibrational modes, and interlayer friction

被引:7
作者
Abbasi-Perez, D. [1 ,2 ]
Menendez, J. M. [1 ,2 ]
Recio, J. M. [1 ,2 ]
Otero-de-la-Roza, A. [3 ,4 ]
del Corro, E. [5 ,6 ]
Taravillo, M. [5 ,6 ]
Baonza, V. G. [5 ,6 ]
Marques, M. [7 ,8 ]
机构
[1] Univ Oviedo, MALTA Consolider Team, E-33006 Oviedo, Spain
[2] Univ Oviedo, Dept Quim Fis & Analit, E-33006 Oviedo, Spain
[3] Univ Calif, MALTA Consolider Team, Merced, CA 95343 USA
[4] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA
[5] Univ Complutense Madrid, MALTA Consolider Team, E-28040 Madrid, Spain
[6] Univ Complutense Madrid, Dept Quim Fis 1, E-28040 Madrid, Spain
[7] Univ Valladolid, MALTA Consolider Team, E-47011 Valladolid, Spain
[8] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain
关键词
ELECTRONIC-PROPERTIES; PRESSURE; 1ST-PRINCIPLES;
D O I
10.1103/PhysRevB.90.054105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Extensive two- and three-dimensional periodic first-principles simulations have been carried out to investigate the mechanical response of graphite to hydrostatic and nonhydrostatic stress conditions. Our results show a clear analogy between uniaxial (sigma(z)) stress and hydrostatic pressure as far as structural changes in the unit cell are concerned. For intralayer C-C distances and in-plane graphite vibrational frequencies, the similarity with hydrostatic conditions is however found under biaxial (sigma(x) = sigma(y)) stresses. The calculated uniaxial equation of state is further used to investigate sliding mechanisms of a graphite layer in graphite at different interlayer separations, thus providing insight at an atomic level on the origin of the low static friction coefficient of graphite.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Van Der Waals Density Functionals for Graphene Layers and Graphite [J].
Birowska, M. ;
Milowska, K. ;
Majewski, J. A. .
ACTA PHYSICA POLONICA A, 2011, 120 (05) :845-848
[2]   1ST-PRINCIPLES STUDY OF THE ELECTRONIC-PROPERTIES OF SIMPLE HEXAGONAL GRAPHITE [J].
CHARLIER, JC ;
MICHENAUD, JP ;
GONZE, X .
PHYSICAL REVIEW B, 1992, 46 (08) :4531-4539
[3]   1ST-PRINCIPLES STUDY OF THE ELECTRONIC-PROPERTIES OF GRAPHITE [J].
CHARLIER, JC ;
GONZE, X ;
MICHENAUD, JP .
PHYSICAL REVIEW B, 1991, 43 (06) :4579-4589
[4]   High-pressure high-temperature equation of state of graphite from Monte Carlo simulations [J].
Colonna, F. ;
Fasolino, A. ;
Meijer, E. J. .
CARBON, 2011, 49 (02) :364-368
[5]   Density functional theory analysis of flexural modes, elastic constants, and corrugations in strained graphene [J].
de Andres, P. L. ;
Guinea, F. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2012, 86 (24)
[6]   Strong covalent bonding between two graphene layers [J].
de Andres, P. L. ;
Ramirez, R. ;
Verges, J. A. .
PHYSICAL REVIEW B, 2008, 77 (04)
[7]   Raman characterization of carbon materials under non-hydrostatic conditions [J].
del Corro, E. ;
Tarauillo, M. ;
Gonzalez, J. ;
Baonza, V. G. .
CARBON, 2011, 49 (03) :973-979
[8]  
del Corro E., UNPUB
[9]   Raman modes and Gruneisen parameters of graphite under compressive biaxial stress [J].
del Corro, Elena ;
Otero de la Roza, Alberto ;
Taravillo, Mercedes ;
Baonza, Valentin G. .
CARBON, 2012, 50 (12) :4600-4606
[10]   Superlubricity of graphite [J].
Dienwiebel, M ;
Verhoeven, GS ;
Pradeep, N ;
Frenken, JWM ;
Heimberg, JA ;
Zandbergen, HW .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :126101-1