Parameter estimation of selfsimilarity exponents

被引:8
作者
Becker-Kern, Peter [1 ]
Pap, Gyula [2 ]
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
[2] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary
关键词
Operator semi-selfsimilar process; Ornstein-Uhlenbeck type process; Parameter estimation; Selfsimilarity exponent; Spectral decomposition;
D O I
10.1016/j.jmva.2007.04.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The characteristic feature of operator selfsimilar stochastic processes is that a linear rescaling in time is equal in the sense of distributions to a linear operator rescaling in space, which in turn is characterized by the selfsimilarity exponent. The growth behaviour of such processes in any radial direction is determined by the real parts of the eigenvalues of the selfsimilarity exponent. We extend an estimation method of Meerschaert and Scheffler [M.M. Meerschaert, H.-P. Scheffler, Moment estimator for random vectors with heavy tails, J. Multivariate Anal. 71 (1999) 145-159, M.M. Meerschaert, H.-P. Scheffler, Portfolio modeling with heavy tailed random vectors, in: S. T. Rachev (Ed.), Handbook of Heavy Tailed Distributions in Finance, Elsevier Science B.V., Amsterdam, 2003, pp. 595-640] to be applicable for estimating the real parts of the eigenvalues of the selfsimilarity exponent and corresponding spectral directions given by the eigenvectors. More generally, the results are applied to operator semi-selfsimilar processes, which obey a weaker scaling property, and to certain Ornstein-Uhlenbeck type processes connected to operator semi-selfsimilar processes via Lamperti's transformation. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:117 / 140
页数:24
相关论文
共 24 条
[1]   Random integral representation of operator-semi-self-similar processes with independent increments [J].
Becker-Kern, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (02) :327-344
[2]  
Beran J., 1992, STAT SCI, V7, P404, DOI [10.1214/ss/1177011122, DOI 10.1214/SS/1177011122]
[3]   EFFICIENT PARAMETER-ESTIMATION FOR SELF-SIMILAR PROCESSES [J].
DAHLHAUS, R .
ANNALS OF STATISTICS, 1989, 17 (04) :1749-1766
[4]   Estimation of the Hurst parameter of some self-similar symmetric stable processes with stationary increments [J].
Dury, ME .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01) :45-48
[5]  
Embrechts P, 2002, PRIN SER APPL MATH, P1
[6]   OPERATOR-SELF-SIMILAR PROCESSES IN A FINITE-DIMENSIONAL SPACE [J].
HUDSON, WN ;
MASON, JD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (01) :281-297
[7]   Self-similar processes with independent increments associated with Levy and Bessel processes [J].
Jeanblanc, M ;
Pitman, J ;
Yor, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 100 :223-231
[8]  
Jurek Z.J., 1982, B ACAD POL SCI, V30, P385
[9]  
Lamperti JW, 1962, T AM MATH SOC, V104, P62, DOI [10.1090/S0002-9947-1962-0138128-7, DOI 10.1090/S0002-9947-1962-0138128-7]
[10]  
Maejima H, 1999, J THEOR PROBAB, V12, P347