L 2 Formulation of Multidimensional Scalar Conservation Laws

被引:21
作者
Brenier, Yann [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, F-06108 Nice, France
关键词
HYPERBOLIC SYSTEMS; QUASILINEAR EQUATIONS; VISCOSITY SOLUTIONS;
D O I
10.1007/s00205-009-0214-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that Kruzhkov's theory of entropy solutions to multidimensional scalar conservation laws (Kruzhkov in Mat Sb (N.S.), 81(123), 228-255, 1970) can be entirely recast in L (2) and fits into the general theory of maximal monotone operators in Hilbert spaces. Our approach is based on a combination of level-set, kinetic and transport-collapse approximations, in the spirit of previous works by Brenier (in C R Acad Sci Paris Ser I Math, 292, 563-566, 1981; in J Diff Equ, 50, 375-390, 1983; in SIAM J Numer Anal, 21, 1013-1037; in Methods Appl Anal, 11, 515-532, 2004), Giga and Miyakawa (in Duke Math J, 50, 505-515, 1983), and Tsai et al. (in Math Comp, 72, 159-181, 2003).
引用
收藏
页码:1 / 19
页数:19
相关论文
共 28 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[3]  
[Anonymous], 1973, N HOLLAND MATH STUDI
[4]  
[Anonymous], 2004, METHODS APPL ANAL
[5]   Vanishing viscosity solutions of nonlinear hyperbolic systems [J].
Bianchini, S ;
Bressan, A .
ANNALS OF MATHEMATICS, 2005, 161 (01) :223-342
[6]  
BOILLAT G, 1996, LECT NOTES MATH, V1640
[7]   Contractive metrics for scalar conservation laws [J].
Bolley, F ;
Brenier, Y ;
Loeper, G .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :91-107
[8]   AVERAGED MULTIVALUED SOLUTIONS FOR SCALAR CONSERVATION-LAWS [J].
BRENIER, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1013-1037
[10]  
BRENIER Y, 1981, CR ACAD SCI I-MATH, V292, P563