On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges

被引:47
作者
Ackerman, Eyal [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
Geometric graphs; Topological graphs; Discharging method; Quasi-planar graphs;
D O I
10.1007/s00454-009-9143-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A topological graph is called k -quasi-planar if it does not contain k pairwise crossing edges. It is conjectured that for every fixed k, the maximum number of edges in a k-quasi-planar graph on n vertices is O(n). We provide an affirmative answer to the case k=4.
引用
收藏
页码:365 / 375
页数:11
相关论文
共 5 条
[1]   On the maximum number of edges in quasi-planar graphs [J].
Ackerman, Eyal ;
Tardos, Gabor .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) :563-571
[2]   Quasi-planar graphs have a linear number of edges [J].
Agarwal, PK ;
Aronov, B ;
Pach, J ;
Pollack, R ;
Sharir, M .
COMBINATORICA, 1997, 17 (01) :1-9
[3]  
Pach J, 2002, LECT NOTES COMPUT SC, V2866, P221
[4]  
Pach J., 1991, DIMACS SERIES DISCRE, V6, P273
[5]  
VALTR P, 1997, LECT NOTES COMPUTER, V1353, P205