A NEW FICTITIOUS DOMAIN APPROACH INSPIRED BY THE EXTENDED FINITE ELEMENT METHOD

被引:79
作者
Haslinger, Jaroslav [1 ]
Renard, Yves [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech Republic
[2] Univ Lyon, CNRS, INSA Lyon,ICJ UMR5208, LaMCoS UMR5259, F-69621 Villeurbanne, France
关键词
fictitious domain; Xfem; approximation of elliptic problems; stabilization technique; LAGRANGE MULTIPLIERS; CRACK-GROWTH; LEVEL SETS; BOUNDARY-CONDITIONS;
D O I
10.1137/070704435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present a new fictitious domain approach inspired by the extended finite element method introduced by Moes, Dolbow, and Belytschko in [Internat. J. Numer. Methods Engrg., 46 (1999), pp. 131-150]. An optimal method is obtained thanks to an additional stabilization technique. Some a priori estimates are established and numerical experiments illustrate different aspects of the method. The presentation is made on a simple Poisson problem with mixed Neumann and Dirichlet boundary conditions. The extension to other problems or boundary conditions is quite straightforward.
引用
收藏
页码:1474 / 1499
页数:26
相关论文
共 30 条
[1]  
Adams R., 2003, Pure and Applied Mathematics, V140
[2]  
[Anonymous], 1978, STUDIES MATH ITS APP
[3]   BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS [J].
BARBOSA, HJC ;
HUGHES, TJR .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :1-15
[4]   THE FINITE-ELEMENT METHOD WITH LAGRANGE MULTIPLIERS ON THE BOUNDARY - CIRCUMVENTING THE BABUSKA-BREZZI CONDITION [J].
BARBOSA, HJC ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 85 (01) :109-128
[5]   Crack tip enrichment in the XFEM using a cutoff function [J].
Chahine, Elie ;
Laborde, Patrick ;
Renard, Yves .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (06) :629-646
[6]  
Ciarlet PG., 1991, Handbook of numerical analysis, VVol. II, P17
[7]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[8]  
Demmel JW, GEN PURPOSE LIB DIRE
[9]  
Ern A., 2004, APPL MATH SCI, V159
[10]  
Girault V., 1995, Jpn. J. Ind. Appl. Math., V12, P487, DOI 10.1007/BF03167240