Quasi-periodic wave solutions of the nonlocal coupled nonlinear Schrodinger equation

被引:10
作者
Wang, Xiu-Bin [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Peoples R China
关键词
Nonlocal coupled nonlinear; Schrodinger equation; Darboux-dressing transformation; Quasi-periodic wave solutions; INVERSE SCATTERING; SOLITON-SOLUTIONS; ROGUE WAVES; INTEGRABILITY;
D O I
10.1016/j.aml.2022.108086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the quasi-periodic waves of the defocusing nonlocal coupled nonlinear Schrodinger equation can be calculated theoretically through a Darboux-dressing transformation by a separation of variable approach. The quasi-periodic wave solutions are expressed in separation-of-variables form. Moreover, special choices of the free parameters allow us to discuss them graphically. Our results may contribute to explaining and enriching the corresponding nonlinear wave phenomena emerging in nonlocal wave modes. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[4]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[5]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)
[6]   Nonlocal nonlinear Schrodinger equations and their soliton solutions [J].
Gurses, Metin ;
Pekcan, Asli .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
[7]   On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions [J].
Ji, Jia-Liang ;
Zhu, Zuo-Nong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 :699-708
[8]   Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations [J].
Khare, Avinash ;
Saxena, Avadh .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
[9]   Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation [J].
Ma, Li-Yuan ;
Shen, Shou-Feng ;
Zhu, Zuo-Nong .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
[10]   INVERSE SCATTERING AND SOLITON SOLUTIONS OF NONLOCAL REVERSE-SPACETIME NONLINEAR SCHRODINGER EQUATIONS [J].
Ma, Wen-Xiu .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (01) :251-263