Existence of Nonabelian Free Subgroups in the Maximal Subgroups of GLn(D)

被引:5
作者
Dorbidi, H. R. [1 ]
Fallah-Moghaddam, R. [1 ]
Mahdavi-Hezavehi, M. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
free subgroup; maximal subgroup; central simple algebra; MULTIPLICATIVE GROUP; SUBNORMAL SUBGROUPS; DIVISION; RINGS;
D O I
10.1142/S100538671400042X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a non-commutative finite dimensional F-central division algebra D, we study conditions under which every non-abelian maximal subgroup M of GL(n) (D) contains a non-cyclic free subgroup. In general, it is shown that either M contains a non-cyclic free subgroup or there exists a unique maximal subfield K of M,(D) such that N-GLn(D)(K*) = M, K* triangle M, K/F is Galois with Gal(K/F) congruent to M/K*, and F[M] = M-n(D). In particular, when F is global or local, it is proved that if ([D : F],Char(F)) = 1, then every nonabelian maximal subgroup of GL(1)(D) contains a non-cyclic free subgroup. Furthermore, it is also shown that GL(n)(F) contains no solvable maximal subgroups provided that F is local or global and n >= 5.
引用
收藏
页码:483 / 496
页数:14
相关论文
共 50 条
[41]   Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups [J].
V. S. Monakhov ;
A. A. Trofimuk .
Siberian Mathematical Journal, 2018, 59 :922-930
[42]   Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups [J].
Monakhov, V. S. ;
Trofimuk, A. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (05) :922-930
[43]   X-permutable maximal subgroups of Sylow subgroups of finite groups [J].
Guo W. ;
Shum K.P. ;
Skiba A.N. .
Ukrainian Mathematical Journal, 2006, 58 (10) :1471-1480
[44]   GENERALIZED POWER CENTRAL GROUP IDENTITIES IN ALMOST SUBNORMAL SUBGROUPS OF GLn(D) [J].
Hai, B. X. ;
Khanh, H., V ;
Bien, M. H. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2020, 31 (04) :739-749
[45]   ON MAXIMAL SUBGROUPS OF FREE OBJECTS OF CERTAIN COMPLETELY REGULAR SEMIGROUP VARIETIES [J].
Dolinka, Igor .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (03) :473-484
[46]   A NOTE ON MAXIMAL SUBGROUPS OF FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS [J].
Dolinka, Igor .
PERIODICA MATHEMATICA HUNGARICA, 2012, 65 (01) :97-105
[47]   A note on maximal subgroups of free idempotent generated semigroups over bands [J].
Igor Dolinka .
Periodica Mathematica Hungarica, 2012, 65 :97-105
[48]   The depth of the maximal subgroups of Ree groups [J].
Hethelyi, Laszlo ;
Horvath, Erzsebet ;
Petenyi, Franciska .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) :37-66
[49]   On finite groups with given maximal subgroups [J].
V. S. Monakhov ;
V. N. Tyutyanov .
Siberian Mathematical Journal, 2014, 55 :451-456
[50]   FINITE GROUPS WHOSE MAXIMAL SUBGROUPS HAVE ONLY SOLUBLE PROPER SUBGROUPS [J].
Lytkina, D. V. ;
Zhurtov, A. Kh. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (01) :237-240