Existence of Nonabelian Free Subgroups in the Maximal Subgroups of GLn(D)

被引:5
作者
Dorbidi, H. R. [1 ]
Fallah-Moghaddam, R. [1 ]
Mahdavi-Hezavehi, M. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
free subgroup; maximal subgroup; central simple algebra; MULTIPLICATIVE GROUP; SUBNORMAL SUBGROUPS; DIVISION; RINGS;
D O I
10.1142/S100538671400042X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a non-commutative finite dimensional F-central division algebra D, we study conditions under which every non-abelian maximal subgroup M of GL(n) (D) contains a non-cyclic free subgroup. In general, it is shown that either M contains a non-cyclic free subgroup or there exists a unique maximal subfield K of M,(D) such that N-GLn(D)(K*) = M, K* triangle M, K/F is Galois with Gal(K/F) congruent to M/K*, and F[M] = M-n(D). In particular, when F is global or local, it is proved that if ([D : F],Char(F)) = 1, then every nonabelian maximal subgroup of GL(1)(D) contains a non-cyclic free subgroup. Furthermore, it is also shown that GL(n)(F) contains no solvable maximal subgroups provided that F is local or global and n >= 5.
引用
收藏
页码:483 / 496
页数:14
相关论文
共 50 条
[31]   Maximal Subgroups of Almost Subnormal Subgroups in Division Rings [J].
Bui Xuan Hai .
ACTA MATHEMATICA VIETNAMICA, 2022, 47 (01) :197-209
[32]   Maximal Subgroups in the Classical Groups Normalizing Solvable Subgroups [J].
Hou, Xin ;
Li, Shangzhi ;
Yang, Yucheng .
ALGEBRA COLLOQUIUM, 2021, 28 (02) :181-194
[33]   ON ALMOST SUBNORMAL SUBGROUPS AND MAXIMAL SUBGROUPS IN SKEW LINEAR GROUPS [J].
Truong Huu Dung .
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 :35-42
[34]   ON SUPERSOLVABLE GROUPS WHOSE MAXIMAL SUBGROUPS OF THE SYLOW SUBGROUPS ARE SUBNORMAL [J].
Guo, Pengfei ;
Xiu, Xingqiang ;
Xu, Guangjun .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02) :315-322
[35]   Permutable Subgroups in GLn(D) and Applications to Locally Finite Group Algebras [J].
Le Qui Danh ;
Mai Hoang Bien ;
Bui Xuan Hai .
Vietnam Journal of Mathematics, 2023, 51 :277-288
[36]   On Maximal Subgroups of Nonsolvable Groups [J].
S. Dong ;
L. Miao ;
J. Zhang ;
J. Zhao .
Siberian Mathematical Journal, 2022, 63 :476-484
[37]   MAXIMAL SUBGROUPS OF SL(n, ℤ) [J].
T. GELANDER ;
C. MEIRI .
Transformation Groups, 2016, 21 :1063-1078
[38]   ON MAXIMAL SUBGROUPS OF NONSOLVABLE GROUPS [J].
Dong, S. ;
Miao, L. ;
Zhang, J. ;
Zhao, J. .
SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (03) :476-484
[39]   On solvability of finite groups with some nonnormal nonabelian subgroups [J].
Kang, Wangqiang ;
Lu, Jiakuan ;
Meng, Wei .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46) :628-631
[40]   On maximal subgroups of the multiplicative group of a division algebra [J].
Hazrat, R. ;
Wadsworth, A. R. .
JOURNAL OF ALGEBRA, 2009, 322 (07) :2528-2543