A mathematical and numerical study of the sensitivity of a reduced order model by POD (ROM-POD), for a 2D incompressible fluid flow

被引:14
作者
Akkari, N. [1 ,2 ]
Hamdouni, A. [1 ]
Liberge, E. [1 ]
Jazar, M. [2 ]
机构
[1] Univ La Rochelle, LaSIE Lab Engn Sci Environm, F-17042 La Rochelle 1, France
[2] Lebanese Univ, LaMA Lab Math & Applicat, Tripoli, Lebanon
关键词
ROM-POD; Sensitivity; Parametric evolution; POD modes number; Error estimates; Navier-Stokes equations;
D O I
10.1016/j.cam.2013.11.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we present contributions concerning a mathematical study of the sensitivity of a reduced order model (ROM) by the proper orthogonal decomposition (POD) technique applied to a quasi-linear parabolic equation. In particular, we apply our theoretical study to the Navier-Stokes equations for a 2D incompressible fluid flow. We present a numerical test of our theoretical result, for an unsteady fluid flow in a channel around a circular cylinder. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:522 / 530
页数:9
相关论文
共 22 条
[1]   On investigation of particle dispersion by a POD approach [J].
Allery, C. ;
Beghein, C. ;
Hamdouni, A. .
INTERNATIONAL APPLIED MECHANICS, 2008, 44 (01) :110-119
[2]  
Allery C., 2005, Communications in Nonlinear Science and Numerical Simulation, V10, P907, DOI 10.1016/j.cnsns.2004.05.005
[3]  
Amsallem D., 2009, 47 AIAA AER SCI M IN
[4]   Interpolation method for adapting reduced-order models and application to aeroelasticity [J].
Amsallem, David ;
Farhat, Charbel .
AIAA JOURNAL, 2008, 46 (07) :1803-1813
[5]   A method for interpolating on manifolds structural dynamics reduced-order models [J].
Amsallem, David ;
Cortial, Julien ;
Carlberg, Kevin ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (09) :1241-1258
[6]   Enablers for robust POD models [J].
Bergmann, M. ;
Bruneau, C. -H. ;
Lollo, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) :516-538
[7]  
Boyer F., 2006, ELEMENTS ANAL ETUDE
[8]   AN "hp" CERTIFIED REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Eftang, Jens L. ;
Patera, Anthony T. ;
Ronquist, Einar M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (06) :3170-3200
[9]   A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations [J].
Grepl, MA ;
Patera, AT .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01) :157-181
[10]   CONVERGENCE RATES OF THE POD-GREEDY METHOD [J].
Haasdonk, Bernard .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03) :859-873