Consistent two-population lattice Boltzmann model for thermal flows

被引:64
|
作者
Karlin, I. V. [1 ]
Sichau, D. [1 ]
Chikatamarla, S. S. [1 ]
机构
[1] ETH, Aerothermochem & Combust Syst Lab, CH-8092 Zurich, Switzerland
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
欧洲研究理事会;
关键词
NAVIER-STOKES EQUATION; TURBULENT FLOWS; BGK MODELS; SIMULATIONS; CONVECTION;
D O I
10.1103/PhysRevE.88.063310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Theory of two-population lattice Boltzmann equations for thermal flow simulations is revisited. The present approach makes use of a consistent division of the conservation laws between the two lattices, where mass and the momentum are conserved quantities on the first lattice, and the energy is conserved quantity of the second lattice. The theory of such a division is developed, and the advantage of energy conservation in the model construction is demonstrated in detail. The present fully local lattice Boltzmann theory is specified on the standard lattices for the simulation of thermal flows. Extension to the subgrid entropic lattice Boltzmann formulation is also given. The theory is validated with a set of standard two-dimensional simulations including planar Couette flow and natural convection in two dimensions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Two relaxation time lattice Boltzmann model for rarefied gas flows
    Esfahani, Javad Abolfazli
    Norouzi, Ali
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 393 : 51 - 61
  • [32] Lattice Boltzmann model for simulating immiscible two-phase flows
    Reis, T.
    Phillips, T. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (14) : 4033 - 4053
  • [33] A two-dimensional lattice Boltzmann model for uniform channel flows
    Xiong, Wenjuan
    Zhang, Junfeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (12) : 3453 - 3460
  • [34] A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows
    Niu, X. D.
    Shu, C.
    Chew, Y. T.
    COMPUTERS & FLUIDS, 2007, 36 (02) : 273 - 281
  • [35] Consistent lattice Boltzmann model for reactive mixtures
    Sawant, N.
    Dorschner, B.
    Karlin, I., V
    JOURNAL OF FLUID MECHANICS, 2022, 941
  • [36] Consistent lattice Boltzmann model for multicomponent mixtures
    Sawant, N.
    Dorschner, B.
    Karlin, I. V.
    JOURNAL OF FLUID MECHANICS, 2021, 909 (909)
  • [37] A consistent generalized model-based lattice Boltzmann flux solver for incompressible porous flows
    Yang, Liuming
    Li, Xuhang
    Yang, Yunfei
    Qin, Shenglei
    Hou, Guoxiang
    Qin, Jingtao
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [38] A cascaded lattice Boltzmann model for thermal convective flows with local heat sources
    Elseid, Fatma M.
    Welch, Samuel W. J.
    Premnath, Kannan N.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2018, 70 : 279 - 298
  • [39] Lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media
    Grissa, Kods
    Chaabane, Raoudha
    Lataoui, Zied
    Benselama, Adel
    Bertin, Yves
    Jemni, Abdelmajid
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [40] Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model
    Guo, Zhaoli
    Zheng, Chuguang
    Shi, Baochang
    Zhao, T. S.
    PHYSICAL REVIEW E, 2007, 75 (03):