Sharp integral inequalities for C-monotone functions of several variables

被引:0
作者
Peric, I
Persson, LE
Wedestig, A
机构
[1] Univ Zagreb, Fac Chem Engn & Technol, Zagreb 10000, Croatia
[2] Univ Lulea, Dept Math, S-97187 Lulea, Sweden
[3] Univ Lulea, Dept Math, S-97187 Lulea, Sweden
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2000年 / 3卷 / 01期
关键词
inequalities; integral inequalities; multidimensional; C-monotone functions; best constants; sharpness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some sharp integral inequalities for C-monotone functions of several variables are proved. All cases of equality are found and some related results are pointed out and discussed.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 18 条
  • [1] Barza S, 1997, MATH NACHR, V186, P67
  • [2] BERGH J, 1994, MATH NACHR, V169, P19
  • [3] Bergh J., 1994, Acta Sci. Math, V59, P221
  • [4] Burenkov, 1992, T MAT I STEKLOVA, V194, P58
  • [5] NONLINEAR VOLTERRA INTEGRAL-EQUATIONS WITH CONVOLUTION KERNEL
    BUSHELL, PJ
    OKRASINSKI, W
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 41 : 503 - 510
  • [6] DELAMO AG, 1993, COLLECT MATH, V44, P115
  • [7] LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING
    GEHRING, FW
    [J]. ACTA MATHEMATICA, 1973, 130 (3-4) : 265 - 277
  • [8] Hardy G.H., 1952, INEQUALITIES
  • [9] HEINIG H, 1995, STUD MATH, V116, P133
  • [10] SOME NEW FUNCTIONAL SPACES
    LORENTZ, GG
    [J]. ANNALS OF MATHEMATICS, 1950, 51 (01) : 37 - 55