The Obesity Paradox in Survival after Cancer Diagnosis: Tools for Evaluation of Potential Bias

被引:22
作者
Mayeda, Elizabeth Rose [1 ]
Glymour, M. Maria [1 ]
机构
[1] Univ Calif San Francisco, Dept Epidemiol & Biostat, Mission Hall,Global Hlth & Clin Sci Bldg, San Francisco, CA 94158 USA
关键词
BODY-MASS INDEX; WEIGHT CHANGE; ASSOCIATION;
D O I
10.1158/1055-9965.EPI-16-0559
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The effects of overweight or obesity on survival after cancer diagnosis are difficult to discern based on observational data because these associations reflect the net impact of both causal and spurious phenomena. We describe two sources of bias that might lead to underestimation of the effect of increased body weight on survival after cancer diagnosis: collider stratification bias and heterogeneity in disease bias. Given the mixed evidence on weight status, weight change, and postdiagnosis survival for cancer patients, systematic evaluation of alternative explanations is critical. The plausible magnitudes of these sources of bias can be quantified on the basis of expert knowledge about particular cancer types using simulation tools. We illustrate each type of bias, describe the assumptions researchers need make to evaluate the plausible magnitude of the bias, and provide a simple example of each bias using the setting of renal cancer. Findings from simulations, tailored to specific types of cancer, could help distinguish real from spurious effects of body weight on patient survival. Using these results can improve guidance for patients and providers about the relative importance of weight management after a diagnosis. (C) 2017 AACR.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 21 条
[1]   Body size and renal cell cancer incidence in a large US cohort study [J].
Adams, Kenneth F. ;
Leitzmann, Michael F. ;
Albanes, Demetrius ;
Kipnis, Victor ;
Moore, Steven C. ;
Schatzkin, Arthur ;
Chow, Wong-Ho .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (03) :268-277
[2]  
[Anonymous], SURV RAT KIDN CANC S
[3]  
[Anonymous], SEER stat fact sheets
[4]  
Arias Elizabeth, 2015, Natl Vital Stat Rep, V64, P1
[5]   Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies [J].
Chan, D. S. M. ;
Vieira, A. R. ;
Aune, D. ;
Bandera, E. V. ;
Greenwood, D. C. ;
McTiernan, A. ;
Rosenblatt, D. Navarro ;
Thune, I. ;
Vieira, R. ;
Norat, T. .
ANNALS OF ONCOLOGY, 2014, 25 (10) :1901-1914
[6]   Body-Mass Index and Mortality among 1.46 Million White Adults. [J].
de Gonzalez, Amy Berrington ;
Hartge, Patricia ;
Cerhan, James R. ;
Flint, Alan J. ;
Hannan, Lindsay ;
MacInnis, Robert J. ;
Moore, Steven C. ;
Tobias, Geoffrey S. ;
Anton-Culver, Hoda ;
Freeman, Laura Beane ;
Beeson, W. Lawrence ;
Clipp, Sandra L. ;
English, Dallas R. ;
Folsom, Aaron R. ;
Freedman, D. Michal ;
Giles, Graham ;
Hakansson, Niclas ;
Henderson, Katherine D. ;
Hoffman-Bolton, Judith ;
Hoppin, Jane A. ;
Koenig, Karen L. ;
Lee, I-Min ;
Linet, Martha S. ;
Park, Yikyung ;
Pocobelli, Gaia ;
Schatzkin, Arthur ;
Sesso, Howard D. ;
Weiderpass, Elisabete ;
Willcox, Bradley J. ;
Wolk, Alicja ;
Zeleniuch-Jacquotte, Anne ;
Willett, Walter C. ;
Thun, Michael J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (23) :2211-2219
[7]  
Feliciano EMC, 2017, CANCER EPIDEM BIOMAR, V26, P44, DOI [10.1158/1055-9965.EPI-16-0150, 10.1158/1055-9965.epi-16-0150]
[8]   Selection Bias as an Explanation for the Obesity Paradox Just Because It's Possible Doesn't Mean It's Plausible [J].
Glymour, M. Maria ;
Vittinghoff, Eric .
EPIDEMIOLOGY, 2014, 25 (01) :4-6
[9]   Quantifying biases in causal models:: Classical confounding vs collider-stratification bias [J].
Greenland, S .
EPIDEMIOLOGY, 2003, 14 (03) :300-306
[10]   Association between Body Mass Index and Cancer Survival in a Pooled Analysis of 22 Clinical Trials [J].
Greenlee, Heather ;
Unger, Joseph M. ;
LeBlanc, Michael ;
Ramsey, Scott ;
Hershman, Dawn L. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2017, 26 (01) :21-29