Lower bounds for L-functions at the edge of the critical strip

被引:22
作者
Gelbart, Stephen S. [1 ]
Lapid, Erez M.
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, Nicki & J Ira Harris Prof Chair, IL-76100 Rehovot, Israel
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
关键词
D O I
10.1353/ajm.2006.0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a coarse lower bound for L-functions of Langlands-Shahidi type of generic cuspidal automorphic representations on the line Re (s) = 1. We follow the path suggested by Sarnak using Eisenstein series and the Maass-Selberg relations. The bounds are weaker than what the method of de la Vallee Poussin gives for the standard L-functions of GL(n), but are applicable to more general automorphic L-functions. Our Theorem answers in a strong form a conjecture posed by Gelbart and Shahidi [J. Amer. Math. Soc. 14 (2001)], and sharpens and considerably simplifies the proof of the main result of that paper.
引用
收藏
页码:619 / 638
页数:20
相关论文
共 32 条
[1]   INTERTWINING-OPERATORS AND RESIDUES .1. WEIGHTED CHARACTERS [J].
ARTHUR, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (01) :19-84
[2]  
ARTHUR J, 1980, COMPOS MATH, V40, P87
[3]   TRACE FORMULA FOR REDUCTIVE GROUPS .1. TERMS ASSOCIATED TO CLASSES IN G(Q) [J].
ARTHUR, JG .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :911-952
[4]  
BRUMLEY F, IN PRESS AM J MATH
[5]   Boundedness of automorphic L-functions in vertical strips [J].
Gelbart, S ;
Shahidi, F .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (01) :79-107
[6]  
GELBART S, 1988, ANAL PROPERTIES AUTO, V6
[7]   A new method for lower bounds of L-functions [J].
Gelbart, SS ;
Lapid, EM ;
Sarnak, P .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) :91-94
[8]   COEFFICIENTS OF MAASS FORMS AND THE SIEGEL ZERO [J].
HOFFSTEIN, J ;
LOCKHART, P .
ANNALS OF MATHEMATICS, 1994, 140 (01) :161-176
[9]  
HOFFSTEIN J, 1995, INT MATH RES NOTICES, V6, P279
[10]  
Iwaniec H, 2000, GEOM FUNCT ANAL, P705