Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries

被引:137
作者
Ding, Jia [1 ]
Zhou, Hui [1 ]
Zhang, Hanlei [1 ]
Tong, Linyue [1 ]
Mitlin, David [2 ]
机构
[1] SUNY Binghamton, Chem & Mat, Binghamton, NY 13902 USA
[2] Clarkson Univ, Chem & Biomol Engn & Mech Engn, Potsdam, NY 13699 USA
关键词
lithium selenium batteries; mesoporous carbon; polyselenide; sodium selenium batteries; volumetric energy; POLARIZED RAMAN; RATE CAPABILITY; COMPOSITE; SE; PERFORMANCE; SULFUR; STORAGE; CAPACITY; CHALLENGES; ORIGIN;
D O I
10.1002/aenm.201701918
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy density (energy per volume) is a key consideration for portable, automotive, and stationary battery applications. Selenium (Se) lithium and sodium metal cathodes are created that are monolithic and free-standing, and with record Se loading of 70 wt%. The carbon host is derived from nanocellulose, an abundant and sustainable forestry product. The composite is extremely dense (2.37 g cm(-3)), enabling theoretical volumetric capacity of 1120 mA h cm(-3). Such architecture is fully distinct from previous Se-carbon nano- or micropowders, intrinsically offering up to 2x higher energy density. For Li storage, the cathode delivers reversible capacity of 1028 mA h cm(-3) (620 mA h g(-1)) and 82% retention over 300 cycles. For Na storage, 848 mA h cm(-3) (511 mA h g(-1)) is obtained with 98% retention after 150 cycles. The electrodes yield superb volumetric energy densities, being 1727 W h L-1 for Li-Se and 980 W h L-1 for Na-Se normalized by total composite mass and volume. Despite the low surface area, over 60% capacity is maintained as the current density is increased from 0.1 to 2 C (30 min charge) with Li or Na. Remarkably, the electrochemical kinetics with Li and Na are comparable, including the transition from interfacial to diffusional control.
引用
收藏
页数:10
相关论文
共 78 条
[51]   The Na-Se (sodium-selenium) system [J].
Sangster, J ;
Pelton, AD .
JOURNAL OF PHASE EQUILIBRIA, 1997, 18 (02) :185-189
[52]   The Li-Se (lithium-selenium) system [J].
Sangster, J ;
Pelton, AD .
JOURNAL OF PHASE EQUILIBRIA, 1997, 18 (02) :181-184
[53]  
Sathiya M, 2015, NAT MATER, V14, P230, DOI [10.1038/NMAT4137, 10.1038/nmat4137]
[54]  
Seo DH, 2016, NAT CHEM, V8, P692, DOI [10.1038/NCHEM.2524, 10.1038/nchem.2524]
[55]   Chiral Nematic Mesoporous Carbon Derived From Nanocrystalline Cellulose [J].
Shopsowitz, Kevin E. ;
Hamad, Wadood Y. ;
MacLachlan, Mark J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (46) :10991-10995
[56]   Sodium-Ion Batteries [J].
Slater, Michael D. ;
Kim, Donghan ;
Lee, Eungje ;
Johnson, Christopher S. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) :947-958
[57]   Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes [J].
Song, Jiangxuan ;
Gordin, Mikhail L. ;
Xu, Terrence ;
Chen, Shuru ;
Yu, Zhaoxin ;
Sohn, Hiesang ;
Lu, Jun ;
Ren, Yang ;
Duan, Yuhua ;
Wang, Donghai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (14) :4325-4329
[58]   Micrometer-Sized, Nanoporous, High-Volumetric-Capacity LiMn0.85Fe0.15PO4 Cathode Material for Rechargeable Lithium-Ion Batteries [J].
Sun, Yang-Kook ;
Oh, Seung-Min ;
Park, Hong-Kyu ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2011, 23 (43) :5050-5054
[59]   A novel type of one-dimensional organic selenium-containing fiber with superior performance for lithium-selenium and sodium-selenium batteries [J].
Wang, Hongqiang ;
Li, Sha ;
Chen, Zhixin ;
Liu, Hua Kun ;
Guo, Zaiping .
RSC ADVANCES, 2014, 4 (106) :61673-61678
[60]   Lithium batteries and cathode materials [J].
Whittingham, MS .
CHEMICAL REVIEWS, 2004, 104 (10) :4271-4301