SMOOTH FIT PRINCIPLE FOR IMPULSE CONTROL OF MULTIDIMENSIONAL DIFFUSION PROCESSES

被引:34
作者
Guo, Xin [1 ]
Wu, Guoliang [2 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
stochastic impulse control; viscosity solution; quasi-variational inequality; smooth fit; controlled diffusion; VISCOSITY SOLUTIONS; STOCHASTIC-CONTROL; SINGULAR CONTROL; INTERVENTION; OPTIMIZATION; INVENTORY; POLICIES;
D O I
10.1137/080716001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Value functions of impulse control problems are known to satisfy quasi-variational inequalities (QVIs) [A. Bensoussan and J.-L. Lions, Impulse Control and Quasivariational Inequalities, Heyden & Son, Philadelphia, 1984; translation of Controle Impulsionnel et Inequations Quasi Variationnelles, Gauthier-Villars, Paris, 1982]. This paper proves the smooth-fit C-1 property of the value function for multidimensional controlled diffusions, using a viscosity solution approach. We show by examples how to exploit this regularity property to derive explicitly optimal policy and value functions.
引用
收藏
页码:594 / 617
页数:24
相关论文
共 38 条
[31]   Optimal control of nonconvex sweeping processes with separable endpoints: Nonsmooth maximum principle for local minimizers [J].
Nour, Chadi ;
Zeidan, Vera .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 318 :113-168
[32]   Maximum principle for partially observed risk-sensitive optimal control problem of McKean-Vlasov FBSDEs involving impulse controls [J].
Lakhdari, Imad Eddine ;
Djenaihi, Youcef ;
Kaouache, Rafik ;
Boulaaras, Salah ;
Jan, Rashid .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (04)
[33]   Continuous Time Mean-Variance Optimal Portfolio Allocation Under Jump Diffusion: An Numerical Impulse Control Approach [J].
Dang, Duy-Minh ;
Forsyth, Peter A. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) :664-698
[34]   A maximum principle for progressive optimal control of mean-field forward-backward stochastic system involving random jumps and impulse controls [J].
Chen, Tian ;
Du, Kai ;
Huang, Zongyuan ;
Wu, Zhen .
ASIAN JOURNAL OF CONTROL, 2024, 26 (02) :736-752
[35]   On Peng's type maximum principle for optimal control of mean-field stochastic differential equations with jump processes [J].
Meherrem, Shahlar ;
Hafayed, Mokhtar ;
Abbas, Syed .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 31 (03) :245-258
[36]   An algorithm based on an iterative optimal stopping method for Feller processes with applications to impulse control, perturbation, and possibly zero random discount problems [J].
Dai, Suhang ;
Menoukeu-Pamen, Olivier .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 421
[37]   Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes [J].
Imran H. Biswas ;
Espen R. Jakobsen ;
Kenneth H. Karlsen .
Applied Mathematics and Optimization, 2010, 62 :47-80
[38]   Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes [J].
Biswas, Imran H. ;
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 62 (01) :47-80