SMOOTH FIT PRINCIPLE FOR IMPULSE CONTROL OF MULTIDIMENSIONAL DIFFUSION PROCESSES

被引:34
作者
Guo, Xin [1 ]
Wu, Guoliang [2 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
stochastic impulse control; viscosity solution; quasi-variational inequality; smooth fit; controlled diffusion; VISCOSITY SOLUTIONS; STOCHASTIC-CONTROL; SINGULAR CONTROL; INTERVENTION; OPTIMIZATION; INVENTORY; POLICIES;
D O I
10.1137/080716001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Value functions of impulse control problems are known to satisfy quasi-variational inequalities (QVIs) [A. Bensoussan and J.-L. Lions, Impulse Control and Quasivariational Inequalities, Heyden & Son, Philadelphia, 1984; translation of Controle Impulsionnel et Inequations Quasi Variationnelles, Gauthier-Villars, Paris, 1982]. This paper proves the smooth-fit C-1 property of the value function for multidimensional controlled diffusions, using a viscosity solution approach. We show by examples how to exploit this regularity property to derive explicitly optimal policy and value functions.
引用
收藏
页码:594 / 617
页数:24
相关论文
共 38 条