Fish early life stage toxicity prediction from acute daphnid toxicity and quantum chemistry

被引:10
作者
Schmidt, S. [1 ]
Schindler, M. [1 ]
Faber, D. [1 ]
Hager, J. [1 ]
机构
[1] Bayer AG, Environm Safety, Crop Sci Div, Monheim, Germany
关键词
Fish early life stage (FELS) toxicity; quantitative structure-activity-activity relationship (QSAAR); sparse partial least squares (sPLS); variable selection; acute Daphnia magna toxicity;
D O I
10.1080/1062936X.2021.1874514
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One step towards reduced animal testing is the use of in silico screening methods to predict toxicity of chemicals, which requires high-quality data to develop models that are reliable and clearly interpretable. We compiled a large data set of fish early life stage no observed effect concentration endpoints (FELS NOEC) based on published data sources and internal studies, containing data for 338 molecules. Furthermore, we developed a new quantitative structure-activity-activity relationship (QSAAR) model to inform estimation of this endpoint using a combination of dimensionality reduction, regularization, and domain knowledge. In particular, we made use of a sparse partial least squares algorithm (sPLS) to select relevant variables from a huge number of molecular descriptors ranging from topological to quantum chemical properties. The final QSAAR model is of low complexity, consisting of 2 latent variables based on 8 molecular descriptors and experimental Daphnia magna acute data (EC50, 48 h). We provide a mechanistic interpretation of each model parameter. The model performs well, with a coefficient of determination r (2) of 0.723 on the training set (cross-validated q (2) = 0.686) and comparable predictivity on a test data set of chemically related molecules with experimental Daphnia magna data (r (2) (test) = 0.687, RMSE = 0.793 log units).
引用
收藏
页码:151 / 174
页数:24
相关论文
共 52 条
[11]   Identification of diverse database subsets using property-based and fragment-based molecular descriptions [J].
Ashton, M ;
Barnard, J ;
Casset, F ;
Charlton, M ;
Downs, G ;
Gorse, D ;
Holliday, J ;
Lahana, R ;
Willett, P .
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 2002, 21 (06) :598-604
[12]   Development of a chronic fish toxicity model for predicting sub-lethal NOEC values for non-polar narcotics [J].
Austin, T. J. ;
Eadsforth, C. V. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2014, 25 (02) :147-160
[13]   Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals [J].
Belanger, Scott E. ;
Rawlings, Jane M. ;
Carr, Gregory J. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2013, 32 (08) :1768-1783
[14]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326
[15]  
Choudhury N., 2018, PRO AQUA FARM MARINE, V1, P180001
[16]   Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish [J].
Claeys, Lieve ;
Iaccino, Federica ;
Janssen, Colin R. ;
Van Sprang, Patrick ;
Verdonck, Frederik .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2013, 32 (10) :2217-2225
[17]   Daphnia magna responses to a vertebrate estrogen receptor agonist and an antagonist:: A multigenerational study [J].
Clubbs, Rebekah L. ;
Brooks, Bryan W. .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2007, 67 (03) :385-398
[18]   Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR™ [J].
de Haas, E. M. ;
Eikelboom, T. ;
Bouwman, T. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2011, 22 (5-6) :545-559
[19]   QSAR Toolbox - workflow and major functionalities [J].
Dimitrov, S. D. ;
Diderich, R. ;
Sobanski, T. ;
Pavlov, T. S. ;
Chankov, G. V. ;
Chapkanov, A. S. ;
Karakolev, Y. H. ;
Temelkov, S. G. ;
Vasilev, R. A. ;
Gerova, K. D. ;
Kuseva, C. D. ;
Todorova, N. D. ;
Mehmed, A. M. ;
Rasenberg, M. ;
Mekenyan, O. G. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2016, 27 (03) :203-219
[20]  
ECHA (European Chemicals Agency), 2017, GUIDANCE INFORM REQU