A Hybrid Neuro-Evolutionary Algorithm for Wind Power Ramp Events Detection

被引:3
作者
Cornejo-Bueno, Laura [1 ]
Aybar-Ruiz, Adrian [1 ]
Camacho-Gomez, Carlos [1 ]
Prieto, Luis [1 ]
Barea-Ropero, Alberto [1 ]
Salcedo-Sanz, Sancho [1 ]
机构
[1] Univ Alcala, Dept Signal Proc & Commun, Madrid, Spain
来源
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I | 2017年 / 10305卷
关键词
Evolutionary algorithms; Extreme Learning Machine; SMOTE; Wind power ramp events; EXTREME LEARNING-MACHINE; FEATURE-SELECTION; PREDICTION; SPEED;
D O I
10.1007/978-3-319-59153-7_64
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, a hybrid system for wind power ramps events prediction in wind farms is proposed. The system is based on modelling the prediction problem as a binary classification problem from atmospheric reanalysis data inputs. On the other hand, a hybrid neuro-evolutive algorithm is proposed, which combines Artificial Neuronal Networks such as Extreme Learning Machines, with evolutionary algorithms to optimize the trained models. The phenomenon under study occurs with a very low probability, for this reason the problem is so unbalanced, and it is necessary to resort to techniques focused on obtain good results by means of a reduction of the samples from the majority class, as the SMOTE approach. A feature selection is performed by the evolutionary algorithm in order to choose the best trained model. Finally, this model is evaluated by a test set and its accuracy performance is given. The accuracy obtained in the results is quite good in terms of classification performance.
引用
收藏
页码:745 / 756
页数:12
相关论文
共 24 条
[1]  
[Anonymous], ELM MATLAB CODE
[2]  
Barbulescu C, 2010, P 24 ANN C NEUR INF, P1
[3]   Prediction of site specific wind energy value factors [J].
Capellaro, Mark .
RENEWABLE ENERGY, 2016, 87 :430-436
[4]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[5]   Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method [J].
Cui, Mingjian ;
Ke, Deping ;
Sun, Yuanzhang ;
Gan, Di ;
Zhang, Jie ;
Hodge, Bri-Mathias .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (02) :422-433
[6]   Detecting, categorizing and forecasting large romps in wind farm power output using meteorological observations and WPPT [J].
Cutler, Nicholas ;
Kay, Merlinde ;
Jacka, Kieran ;
Nielsen, Torben Skov .
WIND ENERGY, 2007, 10 (05) :453-470
[7]   Characterizing Future Large, Rapid Changes in Aggregated Wind Power using Numerical Weather Prediction Spatial Fields [J].
Cutler, Nicholas J. ;
Outhred, Hugh R. ;
MacGill, Iain F. ;
Kay, Merlinde J. ;
Kepert, Jeffrey D. .
WIND ENERGY, 2009, 12 (06) :542-555
[8]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[9]   Improving short-term forecasting during ramp events by means of Regime-Switching Artificial Neural Networks [J].
Gallego, C. ;
Costa, A. ;
Cuerva, A. .
ADVANCES IN SCIENCE AND RESEARCH, 2011, 6 :55-58
[10]   A review on the recent history of wind power ramp forecasting [J].
Gallego-Castillo, Cristobal ;
Cuerva-Tejero, Alvaro ;
Lopez-Garcia, Oscar .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 52 :1148-1157