The Effect of Particle Size on the Processes of Charging and Discharging of the LiFe0.97Ni0.03PO4/C/Ag Cathode Material

被引:4
作者
Gryzlov, D. Yu. [1 ]
Novikova, S. A. [2 ]
Kulova, T. L. [1 ]
Skundin, A. M. [1 ]
Yaroslavtsev, A. B. [2 ]
机构
[1] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Leninskii Pr 31, Moscow 119071, Russia
[2] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Leninskii Pr 31, Moscow 119991, Russia
关键词
lithium iron phosphate; olivine; mechanical processing; milling; cathode material; lithium-ion batteries; LITHIUM IRON PHOSPHATE; ELECTROCHEMICAL PERFORMANCES; CONTROLLABLE SYNTHESIS; ELECTRODE MATERIALS; CARBON-SOURCES; ION BATTERIES; LIFEPO4/C; TRANSPORT; DEINTERCALATION; COMPOSITE;
D O I
10.1134/S1023193518050038
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Olivine-structured LiFe0.97Ni0.03PO4/C/Ag nanomaterials of varying dispersibility are prepared by using sol-gel synthesis with subsequent milling. The materials are certified using X-ray diffraction analysis, scanning electron microscopy, low-temperature nitrogen adsorption, and electrochemical testing under the lithium-ion battery operating conditions. The LiFe0.97Ni0.03PO4/C/Ag cathode material primary particles' size was shown to decrease, under the intensifying of ball-milling, from 42 to 31 nm, while the material's specific surface area increased from 48 to 65 m(2)/g. The discharge capacity, under slow charging-discharging (C/8), approached a theoretical one for all materials under study. It was found that under fast charging-discharging (6 C and 30 C) the discharge capacity is inversely proportional to the particles' mean size. The discharge capacity under the 6 D<inverted exclamation> current came to 75, 94, 97, and 106 mA h/g for the initial material and that milled at a rotation velocity of 300, 500, and 700 rpm, respectively. An increase in the lithium diffusion coefficient upon the samples' intense milling is noted.
引用
收藏
页码:442 / 450
页数:9
相关论文
共 49 条
[1]   Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique [J].
Amin, R. ;
Maier, J. ;
Balaya, P. ;
Chen, D. P. ;
Lin, C. T. .
SOLID STATE IONICS, 2008, 179 (27-32) :1683-1687
[2]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[3]   LiFePO4/carbon nanowires with 3D nano-network structure as potential high performance cathode for lithium ion batteries [J].
Bai, Ningbo ;
Xiang, Kaixiong ;
Zhou, Wei ;
Lu, Huayu ;
Zhao, Xiusong ;
Chen, Han .
ELECTROCHIMICA ACTA, 2016, 191 :23-28
[4]   Chemistry and electrochemistry of lithium iron phosphate [J].
Benoit, Charlotte ;
Franger, Sylvain .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :987-993
[5]  
Boldyrev V.V., 2006, RUSS CHEM REV, V75, P177, DOI [DOI 10.1070/RC2006V075N03ABEH001205, 10.1070/RC2006v075n03ABEH001205]
[6]   Na3V2(PO4)3/C/Ag nanocomposite materials for Na-ion batteries obtained by the modified Pechini method [J].
Chekannikov, Andrey ;
Kapaev, Roman ;
Novikova, Svetlana ;
Tabachkova, Nataliya ;
Kulova, Tatiana ;
Skundin, Alexander ;
Yaroslavtsev, Andrey .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (06) :1615-1624
[7]   Influence of carbon sources on electrochemical performances of LiFePO4/C composites [J].
Chen, Zhao-Yong ;
Zhu, Hua-Li ;
Ji, Shan ;
Fakir, Rushanah ;
Linkov, Vladimir .
SOLID STATE IONICS, 2008, 179 (27-32) :1810-1815
[8]  
Christmann K., 1991, INTRO SURFACE PHYS C
[9]   LiFePO4/C nanocomposites for lithium-ion batteries [J].
Eftekhari, Ali .
JOURNAL OF POWER SOURCES, 2017, 343 :395-411
[10]   Ultrafast, low temperature microwave-assisted solvothermal synthesis of nanostructured lithium iron phosphate optimized by a chemometric approach [J].
Garino, N. ;
Bedini, A. ;
Chiappone, A. ;
Gerbaldi, C. .
ELECTROCHIMICA ACTA, 2015, 184 :381-386