Identification of Bilinear Systems With White Noise Inputs: An Iterative Deterministic-Stochastic Subspace Approach

被引:30
作者
dos Santos, Paulo Lopes [1 ]
Ramos, Jose A. [2 ]
Martins de Carvalho, Jorge L. [1 ]
机构
[1] Univ Porto, Dept Elect & Comp Engn, P-4200465 Oporto, Portugal
[2] Nova SE Univ, Farquhar Coll Arts & Sci, Div Math Sci & Technol, Ft Lauderdale, FL 33314 USA
关键词
Bilinear Kalman filtering; bilinear systems; Hankel matrices; state space methods; subspace identification; MODEL IDENTIFICATION; REALIZATION;
D O I
10.1109/TCST.2008.2002041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this technical brief, a new subspace state space system identification algorithm for multi-input multi-output bilinear systems driven by white noise inputs is introduced. The new algorithm is based on a uniformly convergent Picard sequence of linear deterministic-stochastic state space subsystems which are easily identifiable by any linear deterministic-stochastic subspace algorithm such as MOESP, N4SID, CVA, or CCA. The key to the proposed algorithm is the fact that the bilinear term is a second-order white noise process. Using a standard linear Kalman filter model, the bilinear term can be estimated and combined with the system inputs at each iteration, thus leading to a linear system with extended inputs of dimension m(n + 1), where n is the system order and m is the dimension of the inputs. It is also shown that the model parameters obtained with the new algorithm converge to those of the true bilinear model. Moreover, the proposed algorithm has the same consistency conditions as the linear subspace identification algorithms when i -> infinity, where i is the number of block rows in the past/future block Hankel data matrices. Typical bilinear subspace identification algorithms available in the literature cannot handle large values of i, thus leading to biased parameter estimates. Unlike existing bilinear subspace identification algorithms whose row dimensions in the data matrices grow exponentially, and hence suffer from the "curse of dimensionality," in the proposed algorithm the dimensions of the data matrices are comparable to those of a linear subspace identification algorithm. A case study is presented with data from a heat exchanger experiment.
引用
收藏
页码:1145 / 1153
页数:9
相关论文
共 37 条
[1]   THE SUCCESSIVE APPROXIMATION PROCEDURE FOR FINITE-TIME OPTIMAL-CONTROL OF BILINEAR-SYSTEMS [J].
AGANOVIC, Z ;
GAJIC, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (09) :1932-1935
[2]  
[Anonymous], 1991, Applications to Bilinear Control
[3]   Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms [J].
Bauer, D ;
Ljung, L .
AUTOMATICA, 2002, 38 (05) :763-773
[4]  
Bernstein D. S., 2005, MATRIX MATH THEORY F
[5]  
Caines P. E., 1988, LINEAR STOCHASTIC SY
[6]  
CHEN H, 2000, IFAC SYSID SANT BARB
[7]  
Chen HX, 2000, IEEE DECIS CONTR P, P1573, DOI 10.1109/CDC.2000.912084
[8]   On the ill-conditioning of subspace identification with inputs [J].
Chiuso, A ;
Picci, G .
AUTOMATICA, 2004, 40 (04) :575-589
[9]   Maximum likelihood estimation in space time bilinear models [J].
Dai, YQ ;
Billard, L .
JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (01) :25-44
[10]  
DEMOOR BLR, 2007, DALSY DATABASE IDENT