Explainable AI: A Review of Machine Learning Interpretability Methods

被引:1284
作者
Linardatos, Pantelis [1 ]
Papastefanopoulos, Vasilis [1 ]
Kotsiantis, Sotiris [1 ]
机构
[1] Univ Patras, Dept Math, Patras 26504, Greece
关键词
xai; machine learning; explainability; interpretability; fairness; sensitivity; black-box; GLOBAL SENSITIVITY INDEXES; BLACK-BOX; MODELS; EXPLANATIONS; PREDICTIONS; ROBUSTNESS; DESIGN;
D O I
10.3390/e23010018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into "black box" approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 165 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Agarwal A., 2018, REDUCTIONS APPROACH, V80, P60
[3]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[4]  
Alzantot Moustafa, 2018, P 2018 C EMP METH NA
[5]  
[Anonymous], 2017, P 5 INT C LEARN REPR
[6]  
[Anonymous], 2015, NATURE, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[7]   Visualizing the effects of predictor variables in black box supervised learning models [J].
Apley, Daniel W. ;
Zhu, Jingyu .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (04) :1059-1086
[8]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[9]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[10]  
Bethge M., 2020, ARXIV20070767