Construction of solutions for the polyharmonic equation via local Pohozaev identities

被引:11
作者
Guo, Yuxia [1 ]
Liu, Ting [1 ]
Nie, Jianjun [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Math Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; CRITICAL DIMENSIONS; POSITIVE SOLUTIONS; CRITICAL EXPONENTS; R-N; EXISTENCE; CALCULUS;
D O I
10.1007/s00526-019-1569-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following problem involving critical exponent and polyharmonic operator: (-Delta)(m)u + V(vertical bar y'vertical bar, y '')u = u(m*-1), u > 0, u is an element of D-m,D-2 (R-N), where m* = 2N/N-2m, N >= 4m + 1, m is an element of N+, (y', y '') is an element of R-2 x RN-2 and V(vertical bar y'vertical bar , vertical bar y ''vertical bar) is a bounded non-negative function in R+ x RN-2. By using a finite reduction argument and local Pohozaev type identities, we will show that if N >= 4m + 1 and r(2m)V(r, y '') has a stable critical point (r(0), y(0)''), then the above problem has infinitely many solutions, whose energy can be arbitrarily large.
引用
收藏
页数:33
相关论文
共 28 条
[1]  
Bahri A., 1989, PITMAN RES NOTES MAT
[2]  
Bartsch T, 2004, J REINE ANGEW MATH, V571, P131
[3]   A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator [J].
Bartsch, T ;
Weth, T ;
Willem, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (03) :253-268
[4]  
Beckner W, 1993, J FUNCT ANAL, V187, P197
[5]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[6]   GROUP-REPRESENTATIONS ARISING FROM LORENTZ CONFORMAL GEOMETRY [J].
BRANSON, TP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (02) :199-291
[7]  
Chang S.Y.A., 2002, U LECT SER, V27, P1
[8]   Infinitely many solutions for the Schrodinger equations in RN with critical growth [J].
Chen, Wenyi ;
Wei, Juncheng ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) :2425-2447
[9]   Two-bubble solutions in the super-critical Bahri-Coron's problem [J].
del Pino, M ;
Felmer, P ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 16 (02) :113-145
[10]   On the prescribed scalar curvature problem in RN, local uniqueness and periodicity [J].
Deng, Yinbin ;
Lin, Chang-Shou ;
Yan, Shusen .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06) :1013-1044