Perturbation of frames and Riesz bases in Hilbert C*-modules

被引:20
|
作者
Han, Deguang [2 ]
Jing, Wu [1 ]
Mohapatra, Ram N. [2 ]
机构
[1] Fayetteville State Univ, Dept Math & Comp Sci, Fayetteville, NC 28301 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Perturbations; Frames; Riesz bases; Hilbert C*-modules;
D O I
10.1016/j.laa.2009.03.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the Casazza-Christensen general perturbation theorem for Hilbert space frames to modular frames in Hilbert C*-modules. In the Hilbert space setting, under the same perturbation condition, the perturbation of any Riesz basis remains to be a Riesz basis. However, this result is no longer true for Riesz bases in Hilbert C*-modules. We obtain a necessary and sufficient condition under which the perturbation (under Casazza-Christensen's perturbation condition) of Riesz bases of Hilbert C*-modules remains to be Riesz bases. Published by Elsevier Inc.
引用
收藏
页码:746 / 759
页数:14
相关论文
共 50 条
  • [41] Distribution Frames and Bases
    Trapani, Camillo
    Triolo, Salvatore
    Tschinke, Francesco
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) : 2109 - 2140
  • [42] Distribution Frames and Bases
    Camillo Trapani
    Salvatore Triolo
    Francesco Tschinke
    Journal of Fourier Analysis and Applications, 2019, 25 : 2109 - 2140
  • [43] Weyl-Heisenberg Riesz Bases Generated by Two Intervals
    He, Xing-Gang
    Li, Hai-Xiong
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (05) : 954 - 971
  • [44] Dual Riesz bases and the canonical operator
    De Pasquale, HA
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2004, 6 (01) : 61 - 75
  • [45] Affine Riesz bases and the dual function
    Terekhin, P. A.
    SBORNIK MATHEMATICS, 2016, 207 (09) : 1287 - 1318
  • [46] Multi-tiling and Riesz bases
    Grepstad, Sigrid
    Lev, Nir
    ADVANCES IN MATHEMATICS, 2014, 252 : 1 - 6
  • [47] RIESZ BASES OF EXPONENTIALS ON MULTIBAND SPECTRA
    Lev, Nir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) : 3127 - 3132
  • [48] ON WEAVING FRAMES IN HILBERT SPACES
    Li, Dongwei
    Jiang, Jing
    Xu, Yuxiang
    OPERATORS AND MATRICES, 2023, 17 (03): : 809 - 822
  • [49] Density of frames and Schauder bases of windowed exponentials
    Heil, Christopher
    Kutyniok, Gitta
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (02): : 565 - 600
  • [50] GENERALIZED FRAMES IN HILBERT SPACES
    Najati, A.
    Rahimi, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (01) : 97 - 109