Perturbation of frames and Riesz bases in Hilbert C*-modules

被引:20
|
作者
Han, Deguang [2 ]
Jing, Wu [1 ]
Mohapatra, Ram N. [2 ]
机构
[1] Fayetteville State Univ, Dept Math & Comp Sci, Fayetteville, NC 28301 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Perturbations; Frames; Riesz bases; Hilbert C*-modules;
D O I
10.1016/j.laa.2009.03.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the Casazza-Christensen general perturbation theorem for Hilbert space frames to modular frames in Hilbert C*-modules. In the Hilbert space setting, under the same perturbation condition, the perturbation of any Riesz basis remains to be a Riesz basis. However, this result is no longer true for Riesz bases in Hilbert C*-modules. We obtain a necessary and sufficient condition under which the perturbation (under Casazza-Christensen's perturbation condition) of Riesz bases of Hilbert C*-modules remains to be Riesz bases. Published by Elsevier Inc.
引用
收藏
页码:746 / 759
页数:14
相关论文
共 50 条
  • [31] Riesz bases by replacement
    De Carli, Laura
    Edward, Julian
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2022, 20 (02):
  • [32] STRICT ESSENTIAL EXTENSIONS OF C*-ALGEBRAS AND HILBERT C*-MODULES
    Frank, Michael
    Pavlov, Alexander A.
    JOURNAL OF OPERATOR THEORY, 2010, 64 (01) : 103 - 116
  • [33] Weighted projections and Riesz frames
    Antezana, J
    Corach, G
    Ruiz, M
    Stojanoff, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 402 : 367 - 389
  • [34] Perturbation of linear operators on Banach spaces: some applications to Schauder bases and frames
    M. A. Navascués
    P. Viswanathan
    Aequationes mathematicae, 2020, 94 : 13 - 36
  • [35] Perturbation of linear operators on Banach spaces: some applications to Schauder bases and frames
    Navascues, M. A.
    Viswanathan, P.
    AEQUATIONES MATHEMATICAE, 2020, 94 (01) : 13 - 36
  • [36] Riesz outer product Hilbert space frames: Quantitative bounds, topological properties, and full geometric characterization
    Casazza, Peter G.
    Pinkham, Eric
    Tuomanen, Brian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (01) : 475 - 498
  • [37] A note on exponential Riesz bases
    Caragea, Andrei
    Lee, Dae Gwan
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2022, 20 (02):
  • [38] Combining Riesz bases in Rd
    Kozma, Gady
    Nitzan, Shahaf
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) : 1393 - 1406
  • [39] FRAMES, SEMI-FRAMES, AND HILBERT SCALES
    Antoine, J. -P.
    Balazs, P.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (7-9) : 736 - 769
  • [40] Schatten classes for Hilbert modules over commutative C*-algebras
    Stern, Abel B.
    van Suijlekom, Walter D.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (04)