Perturbation of frames and Riesz bases in Hilbert C*-modules

被引:20
|
作者
Han, Deguang [2 ]
Jing, Wu [1 ]
Mohapatra, Ram N. [2 ]
机构
[1] Fayetteville State Univ, Dept Math & Comp Sci, Fayetteville, NC 28301 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Perturbations; Frames; Riesz bases; Hilbert C*-modules;
D O I
10.1016/j.laa.2009.03.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the Casazza-Christensen general perturbation theorem for Hilbert space frames to modular frames in Hilbert C*-modules. In the Hilbert space setting, under the same perturbation condition, the perturbation of any Riesz basis remains to be a Riesz basis. However, this result is no longer true for Riesz bases in Hilbert C*-modules. We obtain a necessary and sufficient condition under which the perturbation (under Casazza-Christensen's perturbation condition) of Riesz bases of Hilbert C*-modules remains to be Riesz bases. Published by Elsevier Inc.
引用
收藏
页码:746 / 759
页数:14
相关论文
共 50 条
  • [21] Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products
    Zhang, Haizhang
    Zhang, Jun
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 31 (01) : 1 - 25
  • [22] On perturbation of matrix-valued Riesz bases over LCA groups
    Jyoti, Hari Krishan
    Malhotra, Hari Krishan
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024,
  • [23] Dilation of Dual Frame Pairs in Hilbert C*-Modules
    Han, Deguang
    Jing, Wu
    Larson, David
    Li, Pengtong
    Mohapatra, Ram N.
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 241 - 250
  • [24] Dilation of Dual Frame Pairs in Hilbert C*-Modules
    Deguang Han
    Wu Jing
    David Larson
    Pengtong Li
    Ram N. Mohapatra
    Results in Mathematics, 2013, 63 : 241 - 250
  • [25] Unions of exponential Riesz bases
    Lee, Dae Gwan
    AIMS MATHEMATICS, 2024, 9 (09): : 23890 - 23908
  • [26] BESSEL MULTIPLIERS IN HILBERT C*-MODULES
    Khosravi, Amir
    Azandaryani, Morteza Mirzaee
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (03): : 153 - 163
  • [27] Frames containing a Riesz basis and preservation of this property under perturbations
    Casazza, PG
    Christensen, O
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) : 266 - 278
  • [28] APPROXIMATE DUALS AND MORPHISMS OF HILBERT C*-MODULES
    Azandaryani, Morteza Mirzaee
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (04): : 525 - 536
  • [29] STANDARD ATOMIC DECOMPOSITIONS IN HILBERT C*-MODULES
    Alizadeh, Leila
    Hassani, Mahmoud
    Amyari, Maryam
    JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (02): : 140 - 149
  • [30] A new uniform structure for Hilbert C∗-modules
    Fufaev, Denis
    Troitsky, Evgenij
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (03)