Semi-definite programming and functional inequalities for Distributed Parameter Systems

被引:0
作者
Valmorbida, Giorgio [1 ,2 ]
Ahmadi, Mohamadreza [1 ]
Papachristodoulou, Antonis [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, 17 Parks Rd, Oxford OX1 3PJ, England
[2] Univ Oxford, Somerville Coll, Oxford OX1 3PJ, England
来源
2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2014年
基金
英国工程与自然科学研究理事会;
关键词
Sum of Squares; Stability Analysis; Distributed Parameter Systems; PDEs;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study one-dimensional integral inequalities on bounded domains, with quadratic integrands. Conditions for these inequalities to hold are formulated in terms of function matrix inequalities which must hold in the domain of integration. For the case of polynomial function matrices, sufficient conditions for positivity of the matrix inequality and, therefore, for the integral inequalities are cast as semi-definite programs. The inequalities are used to study stability of linear partial differential equations.
引用
收藏
页码:4304 / 4309
页数:6
相关论文
共 28 条
[1]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[2]  
[Anonymous], 1995, P S PURE MATH, DOI 10.1090/pspum/058.2/1327293
[3]   A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients [J].
Argomedo, Federico Bribiesca ;
Prieur, Christophe ;
Witrant, Emmanuel ;
Bremond, Sylvain .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) :290-303
[4]   Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control [J].
Castillo, Felipe ;
Witrant, Emmanuel ;
Prieur, Christophe ;
Dugard, Luc .
AUTOMATICA, 2013, 49 (11) :3180-3188
[5]  
CHESI G, 1999, 5 EUR CONTR C KARLSR
[6]   Stabilization of a rotating body beam without damping [J].
Coron, JM ;
d'Andrea-Novel, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :608-618
[7]  
Curtain RF., 2012, INTRO INFINITE DIMEN
[8]  
Datko R., 1970, Journal of Mathematical Analysis and Applications, V32, P610, DOI 10.1016/0022-247X(70)90283-0
[9]   Analysis and control of parabolic PDE systems with input constraints [J].
El-Farra, NH ;
Armaou, A ;
Christofides, PD .
AUTOMATICA, 2003, 39 (04) :715-725
[10]   Global stability analysis of fluid flows using sum-of-squares [J].
Goulart, Paul J. ;
Chernyshenko, Sergei .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (06) :692-704