Facile Synthesis of Nickel Nanofoam Architectures for Applications in Li-Ion Batteries

被引:9
|
作者
Liu, Chueh [1 ]
Li, Changling [2 ]
Wang, Wei [1 ]
Ozkan, Mihrimah [1 ]
Ozkan, Cengiz S. [2 ]
机构
[1] Univ Calif Riverside, Dept Chem, Dept Elect Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Mech Engn, Dept Elect Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
关键词
energy storage; lithium-ion batteries; nanomaterials; nickel; silicon; ONE-POT SYNTHESIS; METAL FOAM; ANODE MATERIALS; LITHIUM; SILICON; NANOWIRES; NIO;
D O I
10.1002/ente.201600306
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Metal foams are utilized in various applications, such as in the automotive industries and for electrochemical devices. Herein, a Ni nanofoam is synthesized using a facile method for Li-ion batteries. Self-aligned Ni wires or randomly linked webs are produced with or without magnetic field, respectively. Ni granular beads or spiky clusters form at 370 or 450 degrees C, respectively. The surface area of Ni wires is increased by oxalic acid etching at 80 degrees C using 5-30wt% water, leading to Ni oxalate nanosheets, nanowires (NWs), or nanoleaves. Metallic Ni NWs are obtained by reducing Ni oxalate NWs with H-2 at 350 degrees C in 10 min. Carbon-coated Si nanoparticles on Ni NW foam (C-SiNP/NiNWF) show 38% rate enhancement (1222 vs. 889mAhg(-1)) in comparison to C-SiNP/Cufoil. Higher stability of C-SiNP/NiNWF with a capacity retention of 91% is reached vs. 73% for C-SiNP/Cufoil over 180cycles. The ambient-pressure solution process with low temperature and fast reaction time could make large-scale production plausible for these nanoarchitectures.
引用
收藏
页码:422 / 427
页数:6
相关论文
共 50 条
  • [21] Can Li-Ion batteries be the panacea for automotive applications?
    Opitz, A.
    Badami, P.
    Shen, L.
    Vignarooban, K.
    Kannan, A. M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 : 685 - 692
  • [22] Applications of Zwitterions and Zwitterionic Polymers for Li-Ion Batteries
    Yoshizawa-Fujita, Masahiro
    Ohno, Hiroyuki
    CHEMICAL RECORD, 2023, 23 (08)
  • [23] A facile synthesis of vanadium-doped SiOx composites for high-performance Li-ion battery anodes
    Kwon, Myoung-Jun
    Maniyazagan, Munisamy
    Yang, Hyeon-Woo
    Kang, Woo Seung
    Kim, Sun-Jae
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [24] Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries
    Su, Yu-Sheng
    Hsiao, Kuang-Che
    Sireesha, Pedaballi
    Huang, Jen-Yen
    BATTERIES-BASEL, 2022, 8 (01):
  • [25] Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries
    Wang, Yanming
    Wang, Yajing
    Wang, Fei
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 5
  • [26] Si/MgO composite anodes for Li-ion batteries
    Jingbo Chen
    Hailei Zhao
    Jianchao He
    Jing Wang
    Rare Metals, 2011, 30 : 166 - 169
  • [27] Improvement of cyclability of Si as anode for Li-ion batteries
    Ding, Ning
    Xu, Jing
    Yao, Yaxuan
    Wegner, Gerhard
    Lieberwirth, Ingo
    Chen, Chunhua
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 644 - 651
  • [28] Si/MgO composite anodes for Li-ion batteries
    CHEN Jingbo a
    Rare Metals, 2011, 30 (02) : 166 - 169
  • [29] Solvothermal synthesis of nanosized CoSb2 alloy anode for Li-ion batteries
    Xie, J
    Zhao, XB
    Cao, GS
    Zhong, YD
    Zhao, MJ
    Tu, JP
    ELECTROCHIMICA ACTA, 2005, 50 (09) : 1903 - 1907
  • [30] A Facile and Efficient Chemical Prelithiation of Graphite for Full Capacity Utilization of Li-Ion Batteries
    Luo, Yang
    Deng, Yicheng
    Shen, Yifei
    Li, Hui
    Cao, Yuliang
    Ai, Xinping
    ENERGY TECHNOLOGY, 2022, 10 (07)