CONSTRUCTION OF GAUSSIAN QUADRATURE FORMULAS FOR EVEN WEIGHT FUNCTIONS

被引:7
|
作者
Masjed-Jamei, Mohammad [1 ]
Milovanovic, Gradimir V. [2 ,3 ]
机构
[1] KN Toosi Univ Technol, POB 16315-1618, Tehran, Iran
[2] Serbian Acad Arts & Sci, Belgrade, Serbia
[3] Univ Nis, Fac Sci & Math, Nish, Serbia
关键词
Symmetric Gaussian quadrature rules; Symmetric weight functions; Orthogonal polynomials; Jacobi matrix; Pollaczek type weight functions; SYMMETRIC ORTHOGONAL POLYNOMIALS; SUMMATION FORMULAS; CHRISTOFFEL RULES; LINDELOF; PLANA; ABEL;
D O I
10.2298/AADM1701177M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Instead of a quadrature rule of Gaussian type with respect to an,even weight function on (-a, a) with n nodes, we construct the corresponding Gaussian formula on (0, a(2)) with only [(n+1)/2] nodes. Especially, such a procedure is important in the cases of nonclassical weight functions, when the elements of the corresponding three-diagonal Jacobi matrix must be constructed numerically. In this manner, the influence of numerical instabilities in the process of construction can be significantly reduced, because the dimension of the Jacobi matrix is halved. We apply this approach to Pollaczek's type weight functions on (-1,1), to the weight functions on R. which appear in the Abel-Plana summation processes, as well as to a class of weight functions with four free parameters, which covers the generalized ultraspherical and Hermite weights. Some numerical examples are also included.
引用
收藏
页码:177 / 198
页数:22
相关论文
共 50 条
  • [41] Quadrature formulas for integrals transforms generated by orthogonal polynomials
    Campos, Rafael G.
    Dominguez Mota, Francisco
    Coronado, E.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 1181 - 1193
  • [42] Complex Gaussian quadrature for oscillatory integral transforms
    Asheim, Andreas
    Huybrechs, Daan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1322 - 1341
  • [43] Gaussian quadrature rules using function derivatives
    Milovanovic, Gradimir V.
    Cvetkovic, Aleksandar S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 358 - 377
  • [44] ACCURATE COMPUTATIONS WITH TOTALLY POSITIVE MATRICES APPLIED TO THE COMPUTATION OF GAUSSIAN QUADRATURE FORMULAE
    Marco, Ana
    Martinez, Jose-Javier
    Viana, Raquel
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 777 - 791
  • [45] KRONROD EXTENSIONS WITH MULTIPLE NODES OF QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS
    Milovanovic, Gradimir V.
    Spalevic, Miodrag M.
    MATHEMATICS OF COMPUTATION, 2014, 83 (287) : 1207 - 1231
  • [46] OPTIMAL QUADRATURE FORMULAS BASED ON THE phi-FUNCTION METHOD
    Catinas, Teodora
    Coman, Gheorghe
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (01): : 49 - 64
  • [48] A GAUSSIAN QUADRATURE RULE FOR OSCILLATORY INTEGRALS ON A BOUNDED INTERVAL
    Asheim, Andreas
    Deano, Alfredo
    Huybrechs, Daan
    Wang, Haiyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (03) : 883 - 901
  • [49] Characterizing the measures on the unit circle with exact quadrature formulas in the space of polynomials
    Berriochoa, E.
    Cachafeiro, A.
    Garcia Amor, J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (07) : 1370 - 1382
  • [50] Quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity
    Bultheel, Adhemar
    Daruis, Leyla
    Gonzalez-Vera, Pablo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) : 948 - 963