New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators

被引:91
|
作者
Akdemir, Ahmet Ocak [1 ]
Butt, Saad Ihsan [2 ]
Nadeem, Muhammad [2 ]
Ragusa, Maria Alessandra [3 ,4 ]
机构
[1] Ibrahim Cecen Univ Agri, Dept Math, Fac Sci & Letters, TR-04100 Agri, Turkey
[2] COMSATS Univ Islamabad, Lahore Campus, Islamabad 45550, Pakistan
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[4] RUDN Univ, 6 Miklukho,Maklay St, Moscow 117198, Russia
关键词
chebyshev type inequalities; generalized fractional integral operators;
D O I
10.3390/math9020122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, new and general variants have been obtained on Chebyshev's inequality, which is quite old in inequality theory but also a useful and effective type of inequality. The main findings obtained by using integrable functions and generalized fractional integral operators have generalized many existing results as well as iterating the Chebyshev inequality in special cases.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条
  • [31] Some new inequalities for generalized fractional conformable integral operators
    Kottakkaran Sooppy Nisar
    Gauhar Rahman
    Aftab Khan
    Advances in Difference Equations, 2019
  • [32] Conformable fractional integral inequalities of Chebyshev type
    Set, Erhan
    Mumcu, Ilker
    Demirbas, Sevdenur
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2253 - 2259
  • [33] Conformable fractional integral inequalities of Chebyshev type
    Erhan Set
    İlker Mumcu
    Sevdenur Demirbaş
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2253 - 2259
  • [34] CHEBYSHEV TYPE INTEGRAL INEQUALITIES FOR GENERALIZED k-FRACTIONAL CONFORMABLE INTEGRALS
    Habib, Siddra
    Mubeen, Shahid
    Naeem, Muhammad Nawaz
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (04): : 53 - 65
  • [35] Some New Chebyshev and Gruss-type Integral Inequalities for Saigo Fractional Integral Operators and Their q-analogues
    Yang, Wengui
    FILOMAT, 2015, 29 (06) : 1269 - 1289
  • [36] On new general versions of Hermite–Hadamard type integral inequalities via fractional integral operators with Mittag-Leffler kernel
    Havva Kavurmacı Önalan
    Ahmet Ocak Akdemir
    Merve Avcı Ardıç
    Dumitru Baleanu
    Journal of Inequalities and Applications, 2021
  • [37] Certain inequalities via generalized proportional Hadamard fractional integral operators
    Gauhar Rahman
    Thabet Abdeljawad
    Fahd Jarad
    Aftab Khan
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2019
  • [38] Several new integral inequalities via Caputo fractional integral operators
    Ozdemir, M. Emin
    Butt, Saad Ihsan
    Ekinci, Alper
    Nadeem, Mehroz
    FILOMAT, 2023, 37 (06) : 1843 - 1854
  • [39] Certain inequalities via generalized proportional Hadamard fractional integral operators
    Rahman, Gauhar
    Abdeljawad, Thabet
    Jarad, Fahd
    Khan, Aftab
    Nisar, Kottakkaran Sooppy
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [40] On Generalization of Fejer Type Inequalities via Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Celika, Baris
    FILOMAT, 2018, 32 (16) : 5537 - 5547