New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators

被引:91
|
作者
Akdemir, Ahmet Ocak [1 ]
Butt, Saad Ihsan [2 ]
Nadeem, Muhammad [2 ]
Ragusa, Maria Alessandra [3 ,4 ]
机构
[1] Ibrahim Cecen Univ Agri, Dept Math, Fac Sci & Letters, TR-04100 Agri, Turkey
[2] COMSATS Univ Islamabad, Lahore Campus, Islamabad 45550, Pakistan
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[4] RUDN Univ, 6 Miklukho,Maklay St, Moscow 117198, Russia
关键词
chebyshev type inequalities; generalized fractional integral operators;
D O I
10.3390/math9020122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, new and general variants have been obtained on Chebyshev's inequality, which is quite old in inequality theory but also a useful and effective type of inequality. The main findings obtained by using integrable functions and generalized fractional integral operators have generalized many existing results as well as iterating the Chebyshev inequality in special cases.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条
  • [21] The Minkowski inequalities via generalized proportional fractional integral operators
    Rahman, Gauhar
    Khan, Aftab
    Abdeljawad, Thabet
    Nisar, Kottakkaran Sooppy
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [22] On Gruss Type Inequalities Utilizing Generalized Fractional Integral Operators
    Tunc, Tuba
    Usta, Fuat
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [23] On generalization of midpoint type inequalities with generalized fractional integral operators
    Hüseyin Budak
    Fuat Usta
    Mehmet Zeki Sarikaya
    M. Emin Ozdemir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 769 - 790
  • [24] On generalization of midpoint type inequalities with generalized fractional integral operators
    Budak, Hueseyin
    Usta, Fuat
    Sarikaya, Mehmet Zeki
    Ozdemir, M. Emin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 769 - 790
  • [25] Refinements of Pólya-SzegŐ and Chebyshev type inequalities via different fractional integral operators
    Ahmad, Ayyaz
    Anwar, Matloob
    HELIYON, 2024, 10 (15)
  • [26] Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators
    Rahman, Gauhar
    Ullah, Zafar
    Khan, Aftab
    Set, Erhan
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (04):
  • [27] Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
    Yewale, Bhagwat R.
    Pachpatte, Deepak B.
    Aljaaidi, Tariq A.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [28] Gruss type inequalities via generalized fractional operators
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Nadeem, Muhammad
    Raza, Malik Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12559 - 12574
  • [29] Certain Chebyshev Type Integral Inequalities Involving Hadamard's Fractional Operators
    Ntouyas, Sotiris K.
    Purohit, Sunil D.
    Tariboon, Jessada
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [30] Some new inequalities for generalized fractional conformable integral operators
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Khan, Aftab
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)