New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators

被引:94
作者
Akdemir, Ahmet Ocak [1 ]
Butt, Saad Ihsan [2 ]
Nadeem, Muhammad [2 ]
Ragusa, Maria Alessandra [3 ,4 ]
机构
[1] Ibrahim Cecen Univ Agri, Dept Math, Fac Sci & Letters, TR-04100 Agri, Turkey
[2] COMSATS Univ Islamabad, Lahore Campus, Islamabad 45550, Pakistan
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[4] RUDN Univ, 6 Miklukho,Maklay St, Moscow 117198, Russia
关键词
chebyshev type inequalities; generalized fractional integral operators;
D O I
10.3390/math9020122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, new and general variants have been obtained on Chebyshev's inequality, which is quite old in inequality theory but also a useful and effective type of inequality. The main findings obtained by using integrable functions and generalized fractional integral operators have generalized many existing results as well as iterating the Chebyshev inequality in special cases.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 28 条
[1]  
Agarwal R.P., 2016, FASC MATH, V56, P5, DOI [https://doi.org/10.1515/fascmath-2016-0001, DOI 10.1515/FASCMATH-2016-0001]
[2]  
Akkurt A., 2016, NTMSCI, V4, P138, DOI DOI 10.20852/NTMSCI.2016217824
[3]  
[Anonymous], 2017, CREATIVE MATH INFORM
[4]  
Butt S.I., 2020, Eng. Appl. Sci. Lett., V3, P32
[5]  
Chebyshev P., 1882, Proceedings of the Mathematical Society of Kharkov, V2, P93
[6]  
Dahmani Z, 2011, BULL MATH ANAL APPL, V3, P38
[7]  
Diaz R., 2007, DIVULG MAT, V15, P179
[8]  
Farid G., 2019, Open J. Math. Sci., V3, P210, DOI 10.30538/oms2019.0064
[9]   New approach to a generalized fractional integral [J].
Katugampola, Udita N. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :860-865
[10]  
Kilbas AA, 2006, THEORY APPL FRACTION