New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators

被引:91
|
作者
Akdemir, Ahmet Ocak [1 ]
Butt, Saad Ihsan [2 ]
Nadeem, Muhammad [2 ]
Ragusa, Maria Alessandra [3 ,4 ]
机构
[1] Ibrahim Cecen Univ Agri, Dept Math, Fac Sci & Letters, TR-04100 Agri, Turkey
[2] COMSATS Univ Islamabad, Lahore Campus, Islamabad 45550, Pakistan
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
[4] RUDN Univ, 6 Miklukho,Maklay St, Moscow 117198, Russia
关键词
chebyshev type inequalities; generalized fractional integral operators;
D O I
10.3390/math9020122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, new and general variants have been obtained on Chebyshev's inequality, which is quite old in inequality theory but also a useful and effective type of inequality. The main findings obtained by using integrable functions and generalized fractional integral operators have generalized many existing results as well as iterating the Chebyshev inequality in special cases.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条
  • [1] Some new Chebyshev type inequalities utilizing generalized fractional integral operators
    Usta, Fuat
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    AIMS MATHEMATICS, 2020, 5 (02): : 1147 - 1161
  • [2] New refinements of Chebyshev-Polya-Szego-type inequalities via generalized fractional integral operators
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Bhatti, Muhammad Yousaf
    Nadeem, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [3] New refinements of Chebyshev–Pólya–Szegö-type inequalities via generalized fractional integral operators
    Saad Ihsan Butt
    Ahmet Ocak Akdemir
    Muhammad Yousaf Bhatti
    Muhammad Nadeem
    Journal of Inequalities and Applications, 2020
  • [4] Chebyshev type inequalities involving extended generalized fractional integral operators
    Set, Erhan
    Ozdemir, M. Emin
    Demirbas, Sevdenur
    AIMS MATHEMATICS, 2020, 5 (04): : 3573 - 3583
  • [5] CHEBYSHEV TYPE INEQUALITIES INVOLVING GENERALIZED KATUGAMPOLA FRACTIONAL INTEGRAL OPERATORS
    Set, Erhan
    Choi, Junesang
    Mumcu, Ilker
    TAMKANG JOURNAL OF MATHEMATICS, 2019, 50 (04): : 381 - 390
  • [6] INEQUALITIES OF CHEBYSHEV-POLYA-SZEGO TYPE VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Ekinci, Alper
    Nadeem, Muhammad
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 717 - 732
  • [7] New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel
    Srivastava, Hari M.
    Kashuri, Artion
    Mohammed, Pshtiwan Othman
    Alsharif, Abdullah M.
    Guirao, Juan L. G.
    AIMS MATHEMATICS, 2021, 6 (10): : 11167 - 11186
  • [8] ON NEW CHEBYSHEV INEQUALITIES VIA FRACTIONAL OPERATORS
    Alan, Emrullah Aykan
    Celik, Baris
    Set, Erhan
    Dahmani, Zoubir
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 557 - 569
  • [9] New Hadamard-type integral inequalities via a general form of fractional integral operators
    Butt, Saad Ihsan
    Yousaf, Saba
    Akdemir, Ahmet Ocak
    Dokuyucu, Mustafa Ali
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [10] Chebyshev Type Integral Inequalities Involving the Fractional Hypergeometric Operators
    Baleanu, D.
    Purohit, S. D.
    ABSTRACT AND APPLIED ANALYSIS, 2014,