Non-conventional machining is increasing in importance due to some of the specific advantages which can be exploited during machining operation. Electrochemical machining (ECM) appears to be a promising technique, since in many areas of application, it offers several special advantages including higher machining rate, better precision and control, and a wider range of materials that can be machined. The present work is, therefore, initiated to investigate the influence of some predominant electrochemical process parameters such as applied voltage, electrolyte concentration, electrolyte flow rate and tool feed rate on the metal removal rate (MRR), and surface roughness (Ra) to fulfill the effective utilization of electrochemical machining of LM25 Al/10%SiC composites produced through stir casting. The contour plots are generated to study the effect of process parameters as well as their interactions. The process parameters are optimized based on Response Surface Methodology (RSM).