Radio Modulation Classification Using Deep Residual Neural Networks

被引:2
作者
Abbas, Adeeb [1 ]
Pano, Vasil [1 ]
Mainland, Geoffrey [2 ]
Dandekar, Kapil [1 ]
机构
[1] Drexel Univ, Elect & Comp Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
来源
2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM) | 2022年
基金
美国国家科学基金会;
关键词
machine learning; convolution networks; deep learning; modulation recognition; radio frequency; RECOGNITION;
D O I
10.1109/MILCOM55135.2022.10017640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new deep residual network for Automatic Modulation Classification, OPResNet-18. It achieves state-of-the-art accuracy on the RadioML 2016.10a data set. We train the proposed model and other state-of-the-art networks with augmented data by adding a Carrier Frequency Offset (CFO). We find that the previously proposed IQNet-3 is robust to CFO. We demonstrate that this robustness allows the performance of IQNet-3 to be further improved through data augmentation in contrast to existing neural networks that cannot handle CFO. Finally, we provide evidence that standard data pre-processing techniques for time-domain data that reportedly perform well in many domains do not perform as well as a simple alternative, the outer product, in the IQ domain.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Acoustic classification in multifrequency echosounder data using deep convolutional neural networks
    Brautaset, Olav
    Waldeland, Anders Ueland
    Johnsen, Espen
    Malde, Ketil
    Eikvil, Line
    Salberg, Arnt-Borre
    Handegard, Nils Olav
    ICES JOURNAL OF MARINE SCIENCE, 2020, 77 (04) : 1391 - 1400
  • [32] High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
    Rajkomar, Alvin
    Lingam, Sneha
    Taylor, Andrew G.
    Blum, Michael
    Mongan, John
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (01) : 95 - 101
  • [33] High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
    Alvin Rajkomar
    Sneha Lingam
    Andrew G. Taylor
    Michael Blum
    John Mongan
    Journal of Digital Imaging, 2017, 30 : 95 - 101
  • [34] Automatic Modulation Classification of Cochannel Signals using Deep Learning
    Sun, Jiajun
    Wang, Guohua
    Lin, Zhiping
    Razul, Sirajudeen Gulam
    Lai, Xiaoping
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [35] Water stress classification using Convolutional Deep Neural Networks
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) : 311 - 328
  • [36] Polish Court Ruling Classification Using Deep Neural Networks
    Kostrzewa, Lukasz
    Nowak, Robert
    SENSORS, 2022, 22 (06)
  • [37] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [38] Robust acoustic event classification using deep neural networks
    Sharan, Roneel V.
    Moir, Tom J.
    INFORMATION SCIENCES, 2017, 396 : 24 - 32
  • [39] Binary Emotion Classification of Music Using Deep Neural Networks
    Revathy, V. R.
    Pillai, Anitha S.
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2021), 2022, 417 : 484 - 492
  • [40] Radio Frequency Classification and Anomaly Detection using Convolutional Neural Networks
    Conn, Marvin A.
    Josyula, Darsana
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,